Cargando…
Large scale dataset of real space electronic charge density of cubic inorganic materials from density functional theory (DFT) calculations
Driven by the big data science, material informatics has attracted enormous research interests recently along with many recognized achievements. To acquire knowledge of materials by previous experience, both feature descriptors and databases are essential for training machine learning (ML) models wi...
Autores principales: | Wang, Fancy Qian, Choudhary, Kamal, Liu, Yu, Hu, Jianjun, Hu, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861008/ https://www.ncbi.nlm.nih.gov/pubmed/35190537 http://dx.doi.org/10.1038/s41597-022-01158-z |
Ejemplares similares
-
High-throughput density-functional perturbation theory phonons for inorganic materials
por: Petretto, Guido, et al.
Publicado: (2018) -
Text-mined dataset of inorganic materials synthesis recipes
por: Kononova, Olga, et al.
Publicado: (2019) -
A representation-independent electronic charge density database for crystalline materials
por: Shen, Jimmy-Xuan, et al.
Publicado: (2022) -
High throughput calculations for a dataset of bilayer materials
por: Barik, Ranjan Kumar, et al.
Publicado: (2023) -
A band-gap database for semiconducting inorganic materials calculated with hybrid functional
por: Kim, Sangtae, et al.
Publicado: (2020)