Cargando…
Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals
Methods on modelling the human brain as a Complex System have increased remarkably in the literature as researchers seek to understand the underlying foundations behind cognition, behaviour, and perception. Computational methods, especially Graph Theory-based methods, have recently contributed signi...
Autores principales: | Ioannides, Georgios, Kourouklides, Ioannis, Astolfi, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861015/ https://www.ncbi.nlm.nih.gov/pubmed/35190579 http://dx.doi.org/10.1038/s41598-022-06573-1 |
Ejemplares similares
-
Deep Learning of Explainable EEG Patterns as Dynamic Spatiotemporal Clusters and Rules in a Brain-Inspired Spiking Neural Network
por: Doborjeh, Maryam, et al.
Publicado: (2021) -
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
por: Duan, Qingxi, et al.
Publicado: (2020) -
Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses
por: Wang, Wei, et al.
Publicado: (2018) -
Multitask computation through dynamics in recurrent spiking neural networks
por: Pugavko, Mechislav M., et al.
Publicado: (2023) -
A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns
por: She, Xueyuan, et al.
Publicado: (2021)