Cargando…
Inverse design of 3d molecular structures with conditional generative neural networks
The rational design of molecules with desired properties is a long-standing challenge in chemistry. Generative neural networks have emerged as a powerful approach to sample novel molecules from a learned distribution. Here, we propose a conditional generative neural network for 3d molecular structur...
Autores principales: | Gebauer, Niklas W. A., Gastegger, Michael, Hessmann, Stefaan S. P., Müller, Klaus-Robert, Schütt, Kristof T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861047/ https://www.ncbi.nlm.nih.gov/pubmed/35190542 http://dx.doi.org/10.1038/s41467-022-28526-y |
Ejemplares similares
-
Machine learning of solvent effects on molecular spectra and reactions
por: Gastegger, Michael, et al.
Publicado: (2021) -
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
por: Schütt, K. T., et al.
Publicado: (2019) -
Automatic identification of chemical moieties
por: Lederer, Jonas, et al.
Publicado: (2023) -
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
por: Unke, Oliver T., et al.
Publicado: (2021) -
Quantum-chemical insights from deep tensor neural networks
por: Schütt, Kristof T., et al.
Publicado: (2017)