Cargando…
Combination predicting model of traffic congestion index in weekdays based on LightGBM-GRU
Tree-based and deep learning methods can automatically generate useful features. Not only can it enhance the original feature representation, but it can also learn to generate new features. This paper develops a strategy based on Light Gradient Boosting Machine (LightGBM or LGB) and Gated Recurrent...
Autores principales: | Cheng, Wei, Li, Jiang-lin, Xiao, Hai-Cheng, Ji, Li-na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861090/ https://www.ncbi.nlm.nih.gov/pubmed/35190646 http://dx.doi.org/10.1038/s41598-022-06975-1 |
Ejemplares similares
-
Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model
por: Su, Ye, et al.
Publicado: (2023) -
Energy consumption prediction using the GRU-MMattention-LightGBM model with features of Prophet decomposition
por: Liang, Shaokun, et al.
Publicado: (2023) -
Optimized LightGBM Power Fingerprint Identification Based on Entropy Features
por: Lin, Lin, et al.
Publicado: (2022) -
Predicting Metabolite–Disease Associations Based on LightGBM Model
por: Zhang, Cheng, et al.
Publicado: (2021) -
Prediction of air quality index based on the SSA-BiLSTM-LightGBM model
por: Zhang, Xiaowen, et al.
Publicado: (2023)