Cargando…

Rumen fermentation and epithelial gene expression responses to diet ingredients designed to differ in ruminally degradable protein and fiber supplies

Although numerous studies exist relating ruminal volatile fatty acid (VFA) concentrations to diet composition and animal performance, minimal information is available describing how VFA dynamics respond to diets within the context of the whole rumen environment. The objective of this study was to ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Gleason, C. B., Beckett, L. M., White, R. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861106/
https://www.ncbi.nlm.nih.gov/pubmed/35190602
http://dx.doi.org/10.1038/s41598-022-06890-5
Descripción
Sumario:Although numerous studies exist relating ruminal volatile fatty acid (VFA) concentrations to diet composition and animal performance, minimal information is available describing how VFA dynamics respond to diets within the context of the whole rumen environment. The objective of this study was to characterize how protein and fiber sources affect dry matter intake, rumen pH, fluid dynamics, fermentation parameters, and epithelial gene expression. Four diet treatments (soybean meal or heat-treated soybean meal and beet pulp or timothy hay) were delivered to 10 wethers. The soybean meals served as crude protein (CP) sources while the beet pulp and timothy hay represented neutral detergent fiber (NDF) sources. Feed intake, rumen pH, fluid pool size, and fluid passage rate were unaffected by treatment. Butyrate synthesis and absorption were greater on the beet pulp treatment whereas synthesis and absorption of other VFA remained unchanged. Both CP and NDF treatment effects were associated with numerous VFA interconversions. Expression levels of rumen epithelial genes were not altered by diet treatment. These results indicate that rumen VFA dynamics are altered by changes in dietary sources of nutrients but that intake, rumen environmental parameters, and the rumen epithelium may be less responsive to such changes.