Cargando…
Artificial intelligence outperforms standard blood-based scores in identifying liver fibrosis patients in primary care
For years, hepatologists have been seeking non-invasive methods able to detect significant liver fibrosis. However, no previous algorithm using routine blood markers has proven to be clinically appropriate in primary care. We present a novel approach based on artificial intelligence, able to predict...
Autores principales: | Blanes-Vidal, Victoria, Lindvig, Katrine P., Thiele, Maja, Nadimi, Esmaeil S., Krag, Aleksander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861108/ https://www.ncbi.nlm.nih.gov/pubmed/35190650 http://dx.doi.org/10.1038/s41598-022-06998-8 |
Ejemplares similares
-
Hepatorenal Index by B‐Mode Ratio Versus Imaging and Fatty Liver Index to Diagnose Steatosis in Alcohol‐Related and Nonalcoholic Fatty Liver Disease
por: Kjaergaard, Maria, et al.
Publicado: (2022) -
An Outperforming Artificial Intelligence Model to Identify Referable Blepharoptosis for General Practitioners
por: Hung, Ju-Yi, et al.
Publicado: (2022) -
Edge artificial intelligence wireless video capsule endoscopy
por: Sahafi, A., et al.
Publicado: (2022) -
Prognostic performance of 7 biomarkers compared to liver biopsy in early alcohol-related liver disease
por: Rasmussen, Ditlev Nytoft, et al.
Publicado: (2021) -
Facial erythema detects diabetic neuropathy using the fusion of machine learning, random matrix theory and self organized criticality
por: Nadimi, Esmaeil S., et al.
Publicado: (2020)