Cargando…

Interpreting Clinical Trials With Omega-3 Supplements in the Context of Ancestry and FADS Genetic Variation

Human diets in developed countries such as the US have changed dramatically over the past 75 years, leading to increased obesity, inflammation, and cardiometabolic dysfunction. Evidence over the past decade indicates that the interaction of genetic variation with changes in the intake of 18-carbon e...

Descripción completa

Detalles Bibliográficos
Autores principales: Chilton, Floyd H., Manichaikul, Ani, Yang, Chaojie, O'Connor, Timothy D., Johnstone, Laurel M., Blomquist, Sarah, Schembre, Susan M., Sergeant, Susan, Zec, Manja, Tsai, Michael Y., Rich, Stephen S., Bridgewater, Susan J., Mathias, Rasika A., Hallmark, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861490/
https://www.ncbi.nlm.nih.gov/pubmed/35211495
http://dx.doi.org/10.3389/fnut.2021.808054
Descripción
Sumario:Human diets in developed countries such as the US have changed dramatically over the past 75 years, leading to increased obesity, inflammation, and cardiometabolic dysfunction. Evidence over the past decade indicates that the interaction of genetic variation with changes in the intake of 18-carbon essential dietary omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), respectively, has impacted numerous molecular and clinical phenotypes. Interactions are particularly relevant with the FADS1 and FADS2 genes, which encode key fatty acid desaturases in the pathway that converts LA and ALA to their long chain (≥20 carbons), highly unsaturated fatty acid (HUFA) counterparts. These gene by nutrient interactions affect the levels and balance of n-6 and n-3 HUFA that in turn are converted to a wide array of lipids with signaling roles, including eicosanoids, docosanoids, other oxylipins and endocannabinoids. With few exceptions, n-6 HUFA are precursors of pro-inflammatory/pro-thrombotic signaling lipids, and n-3 HUFA are generally anti-inflammatory/anti-thrombotic. We and others have demonstrated that African ancestry populations have much higher frequencies (vs. European-, Asian- or indigenous Americas-ancestry populations) of a FADS “derived” haplotype that is associated with the efficient conversion of high levels of dietary n-6 PUFA to pro-inflammatory n-6 HUFA. By contrast, an “ancestral” haplotype, carrying alleles associated with a limited capacity to synthesize HUFA, which can lead to n-3 HUFA deficiency, is found at high frequency in certain Hispanic populations and is nearly fixed in several indigenous populations from the Americas. Based on these observations, a focused secondary subgroup analysis of the VITAL n-3 HUFA supplementation trial stratifying the data based on self-reported ancestry revealed that African Americans may benefit from n-3 HUFA supplementation, and both ancestry and FADS variability should be factored into future clinical trials design.