Cargando…
Extending electronic medical records vector models with knowledge graphs to improve hospitalization prediction
BACKGROUND: Artificial intelligence methods applied to electronic medical records (EMRs) hold the potential to help physicians save time by sharpening their analysis and decisions, thereby improving the health of patients. On the one hand, machine learning algorithms have proven their effectiveness...
Autores principales: | Gazzotti, Raphaël, Faron, Catherine, Gandon, Fabien, Lacroix-Hugues, Virginie, Darmon, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861628/ https://www.ncbi.nlm.nih.gov/pubmed/35193692 http://dx.doi.org/10.1186/s13326-022-00261-9 |
Ejemplares similares
-
Learning a Health Knowledge Graph from Electronic Medical Records
por: Rotmensch, Maya, et al.
Publicado: (2017) -
Automatic knowledge extraction from Chinese electronic medical records and rheumatoid arthritis knowledge graph construction
por: Liu, Feifei, et al.
Publicado: (2023) -
Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
por: Bean, Daniel M., et al.
Publicado: (2017) -
QAnalysis: a question-answer driven analytic tool on knowledge graphs for leveraging electronic medical records for clinical research
por: Ruan, Tong, et al.
Publicado: (2019) -
Construction of a Digestive System Tumor Knowledge Graph Based on Chinese Electronic Medical Records: Development and Usability Study
por: Xiu, Xiaolei, et al.
Publicado: (2020)