Cargando…
A hierarchical Bayesian model to find brain-behaviour associations in incomplete data sets
Canonical Correlation Analysis (CCA) and its regularised versions have been widely used in the neuroimaging community to uncover multivariate associations between two data modalities (e.g., brain imaging and behaviour). However, these methods have inherent limitations: (1) statistical inferences abo...
Autores principales: | Ferreira, Fabio S., Mihalik, Agoston, Adams, Rick A., Ashburner, John, Mourao-Miranda, Janaina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861855/ https://www.ncbi.nlm.nih.gov/pubmed/34971767 http://dx.doi.org/10.1016/j.neuroimage.2021.118854 |
Ejemplares similares
-
A cross-cohort replicable and heritable latent dimension linking behaviour to multi-featured brain structure
por: Nicolaisen-Sobesky, Eliana, et al.
Publicado: (2022) -
Author Correction: A cross-cohort replicable and heritable latent dimension linking behaviour to multi-featured brain structure
por: Nicolaisen-Sobesky, Eliana, et al.
Publicado: (2023) -
Brain-behaviour modes of covariation in healthy and clinically depressed young people
por: Mihalik, Agoston, et al.
Publicado: (2019) -
Multiple Holdouts With Stability: Improving the Generalizability of Machine Learning Analyses of Brain–Behavior Relationships
por: Mihalik, Agoston, et al.
Publicado: (2020) -
Hierarchical disruption in the Bayesian brain: Focal epilepsy and brain networks
por: Omidvarnia, Amir, et al.
Publicado: (2017)