Cargando…

Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha

While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermo...

Descripción completa

Detalles Bibliográficos
Autores principales: Dekker, Wijbrand J C, Jürgens, Hannes, Ortiz-Merino, Raúl A, Mooiman, Christiaan, van den Berg, Remon, Kaljouw, Astrid, Mans, Robert, Pronk, Jack T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862043/
https://www.ncbi.nlm.nih.gov/pubmed/35137036
http://dx.doi.org/10.1093/femsyr/foac007
_version_ 1784654985668067328
author Dekker, Wijbrand J C
Jürgens, Hannes
Ortiz-Merino, Raúl A
Mooiman, Christiaan
van den Berg, Remon
Kaljouw, Astrid
Mans, Robert
Pronk, Jack T
author_facet Dekker, Wijbrand J C
Jürgens, Hannes
Ortiz-Merino, Raúl A
Mooiman, Christiaan
van den Berg, Remon
Kaljouw, Astrid
Mans, Robert
Pronk, Jack T
author_sort Dekker, Wijbrand J C
collection PubMed
description While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD(+) redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD(+)-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha.
format Online
Article
Text
id pubmed-8862043
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-88620432022-02-23 Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha Dekker, Wijbrand J C Jürgens, Hannes Ortiz-Merino, Raúl A Mooiman, Christiaan van den Berg, Remon Kaljouw, Astrid Mans, Robert Pronk, Jack T FEMS Yeast Res Research Article While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD(+) redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD(+)-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha. Oxford University Press 2022-02-07 /pmc/articles/PMC8862043/ /pubmed/35137036 http://dx.doi.org/10.1093/femsyr/foac007 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Dekker, Wijbrand J C
Jürgens, Hannes
Ortiz-Merino, Raúl A
Mooiman, Christiaan
van den Berg, Remon
Kaljouw, Astrid
Mans, Robert
Pronk, Jack T
Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha
title Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha
title_full Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha
title_fullStr Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha
title_full_unstemmed Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha
title_short Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha
title_sort respiratory reoxidation of nadh is a key contributor to high oxygen requirements of oxygen-limited cultures of ogataea parapolymorpha
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862043/
https://www.ncbi.nlm.nih.gov/pubmed/35137036
http://dx.doi.org/10.1093/femsyr/foac007
work_keys_str_mv AT dekkerwijbrandjc respiratoryreoxidationofnadhisakeycontributortohighoxygenrequirementsofoxygenlimitedculturesofogataeaparapolymorpha
AT jurgenshannes respiratoryreoxidationofnadhisakeycontributortohighoxygenrequirementsofoxygenlimitedculturesofogataeaparapolymorpha
AT ortizmerinoraula respiratoryreoxidationofnadhisakeycontributortohighoxygenrequirementsofoxygenlimitedculturesofogataeaparapolymorpha
AT mooimanchristiaan respiratoryreoxidationofnadhisakeycontributortohighoxygenrequirementsofoxygenlimitedculturesofogataeaparapolymorpha
AT vandenbergremon respiratoryreoxidationofnadhisakeycontributortohighoxygenrequirementsofoxygenlimitedculturesofogataeaparapolymorpha
AT kaljouwastrid respiratoryreoxidationofnadhisakeycontributortohighoxygenrequirementsofoxygenlimitedculturesofogataeaparapolymorpha
AT mansrobert respiratoryreoxidationofnadhisakeycontributortohighoxygenrequirementsofoxygenlimitedculturesofogataeaparapolymorpha
AT pronkjackt respiratoryreoxidationofnadhisakeycontributortohighoxygenrequirementsofoxygenlimitedculturesofogataeaparapolymorpha