Cargando…

A multipurpose TNM stage ontology for cancer registries

BACKGROUND: Population-based cancer registries are a critical reference source for the surveillance and control of cancer. Cancer registries work extensively with the internationally recognised TNM classification system used to stage solid tumours, but the system is complex and compounded by the dif...

Descripción completa

Detalles Bibliográficos
Autores principales: Nicholson, Nicholas Charles, Giusti, Francesco, Bettio, Manola, Carvalho, Raquel Negrao, Dimitrova, Nadya, Dyba, Tadeusz, Flego, Manuela, Neamtiu, Luciana, Randi, Giorgia, Martos, Carmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862240/
https://www.ncbi.nlm.nih.gov/pubmed/35193690
http://dx.doi.org/10.1186/s13326-022-00260-w
Descripción
Sumario:BACKGROUND: Population-based cancer registries are a critical reference source for the surveillance and control of cancer. Cancer registries work extensively with the internationally recognised TNM classification system used to stage solid tumours, but the system is complex and compounded by the different TNM editions in concurrent use. TNM ontologies exist but the design requirements are different for the needs of the clinical and cancer-registry domains. Two TNM ontologies developed specifically for cancer registries were designed for different purposes and have limitations for serving wider application. A unified ontology is proposed to serve the various cancer registry TNM-related tasks and reduce the multiplication effects of different ontologies serving specific tasks. The ontology is comprehensive of the rules for TNM edition 7 as required by cancer registries and designed on a modular basis to allow extension to other TNM editions. RESULTS: A unified ontology was developed building on the experience and design of the existing ontologies. It follows a modular approach allowing plug in of components dependent upon any particular TNM edition. A Java front-end was developed to interface with the ontology via the Web Ontology Language application programme interface and enables batch validation or classification of cancer registry records. The programme also allows the means of automated error correction in some instances. Initial tests verified the design concept by correctly inferring TNM stage and successfully handling the TNM-related validation checks on a number of cancer case records, with a performance similar to that of an existing ontology dedicated to the task. CONCLUSIONS: The unified ontology provides a multi-purpose tool for TNM-related tasks in a cancer registry and is scalable for different editions of TNM. It offers a convenient way of quickly checking validity of cancer case stage information and for batch processing of multi-record data via a dedicated front-end programme. The ontology is adaptable to many uses, either as a standalone TNM module or as a component in applications of wider focus. It provides a first step towards a single, unified TNM ontology for cancer registries.