Cargando…
Machine learning and bioinformatics analysis revealed classification and potential treatment strategy in stage 3–4 NSCLC patients
BACKGROUND: Precision medicine has increased the accuracy of cancer diagnosis and treatment, especially in the era of cancer immunotherapy. Despite recent advances in cancer immunotherapy, the overall survival rate of advanced NSCLC patients remains low. A better classification in advanced NSCLC is...
Autores principales: | Li, Chang, Tian, Chen, Zeng, Yulan, Liang, Jinyan, Yang, Qifan, Gu, Feifei, Hu, Yue, Liu, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862473/ https://www.ncbi.nlm.nih.gov/pubmed/35193578 http://dx.doi.org/10.1186/s12920-022-01184-1 |
Ejemplares similares
-
Integrated Analysis of MATH-Based Subtypes Reveals a Novel Screening Strategy for Early-Stage Lung Adenocarcinoma
por: Li, Chang, et al.
Publicado: (2022) -
Development and validation of machine learning models to predict survival of patients with resected stage-III NSCLC
por: Jin, Long, et al.
Publicado: (2023) -
Comprehensive Profiling Reveals Distinct Microenvironment and Metabolism Characterization of Lung Adenocarcinoma
por: Li, Chang, et al.
Publicado: (2021) -
Retrotransposons in Plant Genomes: Structure, Identification, and Classification through Bioinformatics and Machine Learning
por: Orozco-Arias, Simon, et al.
Publicado: (2019) -
Application of metabolomics by UHPLC-MS/MS in diagnostics and biomarker discovery of non-small cell lung cancer
por: Liu, Yuting, et al.
Publicado: (2019)