Cargando…
Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning
Effective embedding is actively conducted by applying deep learning to biomolecular information. Obtaining better embeddings enhances the quality of downstream analyses, such as DNA sequence motif detection and protein function prediction. In this study, we adopt a pre-training algorithm for the eff...
Autores principales: | Akiyama, Manato, Sakakibara, Yasubumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862729/ https://www.ncbi.nlm.nih.gov/pubmed/35211670 http://dx.doi.org/10.1093/nargab/lqac012 |
Ejemplares similares
-
RNA secondary structure prediction using deep learning with thermodynamic integration
por: Sato, Kengo, et al.
Publicado: (2021) -
Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots
por: Akiyama, Manato, et al.
Publicado: (2022) -
Genomic style: yet another deep-learning approach to characterize bacterial genome sequences
por: Yoshimura, Yuka, et al.
Publicado: (2021) -
DotAligner: identification and clustering of RNA structure motifs
por: Smith, Martin A., et al.
Publicado: (2017) -
Network embedding-based representation learning for single cell RNA-seq data
por: Li, Xiangyu, et al.
Publicado: (2017)