Cargando…

Changes in Orientation Behavior due to Extended High-Frequency (5 to 10 kHz) Spatial Cues

Current hearing aids have a limited bandwidth, which limits the intelligibility and quality of their output, and inhibits their uptake. Recent advances in signal processing, as well as novel methods of transduction, allow for a greater useable frequency range. Previous studies have shown a benefit f...

Descripción completa

Detalles Bibliográficos
Autores principales: Whitmer, William M., McShefferty, David, Levy, Suzanne C., Naylor, Graham, Edwards, Brent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862772/
https://www.ncbi.nlm.nih.gov/pubmed/34432670
http://dx.doi.org/10.1097/AUD.0000000000001113
Descripción
Sumario:Current hearing aids have a limited bandwidth, which limits the intelligibility and quality of their output, and inhibits their uptake. Recent advances in signal processing, as well as novel methods of transduction, allow for a greater useable frequency range. Previous studies have shown a benefit for this extended bandwidth in consonant recognition, talker-sex identification, and separating sound sources. To explore whether there would be any direct spatial benefits to extending bandwidth, we used a dynamic localization method in a realistic situation. DESIGN: Twenty-eight adult participants with minimal hearing loss reoriented themselves as quickly and accurately as comfortable to a new, off-axis near-field talker continuing a story in a background of far-field talkers of the same overall level in a simulated large room with common building materials. All stimuli were low-pass filtered at either 5 or 10 kHz on each trial. To further simulate current hearing aids, participants wore microphones above the pinnae and insert earphones adjusted to provide a linear, zero-gain response. RESULTS: Each individual trajectory was recorded with infra-red motion-tracking and analyzed for accuracy, duration, start time, peak velocity, peak velocity time, complexity, reversals, and misorientations. Results across listeners showed a significant increase in peak velocity and significant decrease in start and peak velocity time with greater (10 kHz) bandwidth. CONCLUSIONS: These earlier, swifter orientations demonstrate spatial benefits beyond static localization accuracy in plausible conditions; extended bandwidth without pinna cues provided more salient cues in a realistic mixture of talkers.