Cargando…

Ipragliflozin attenuates non-alcoholic steatohepatitis development in an animal model

Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease with no decisive treatment. The sodium glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin was developed as a new oral hypoglycemic drug, which can improve NASH via an insulin-independent glucose-lowering effect by inhibiting...

Descripción completa

Detalles Bibliográficos
Autores principales: Morishita, Asahiro, Tadokoro, Tomoko, Fujihara, Shintaro, Iwama, Hisakazu, Oura, Kyoko, Fujita, Koji, Tani, Joji, Takuma, Kei, Nakahara, Mai, Shi, Tingting, Haba, Reiji, Okano, Keiichi, Nishiyama, Akira, Ono, Masafumi, Himoto, Takashi, Masaki, Tsutomu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863244/
https://www.ncbi.nlm.nih.gov/pubmed/35192632
http://dx.doi.org/10.1371/journal.pone.0261310
Descripción
Sumario:Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease with no decisive treatment. The sodium glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin was developed as a new oral hypoglycemic drug, which can improve NASH via an insulin-independent glucose-lowering effect by inhibiting glucose reabsorption in the renal proximal tubules. However, ipragliflozin appears to modulate steatosis or inflammation via different pathways. To elucidate the new mechanism of ipragliflozin for the treatment of NASH, we evaluated its effects in a NASH mouse model (STAM mice) with beta cell depletion, and compared the expression of microRNAs (miRNAs) in STAM mice treated with or without ipragliflozin (16.7 μg/day for 5 weeks). Ipragliflozin reduced aspartate transaminase and alanine aminotransferase levels, along with reduced hepatic steatosis, hepatocyte ballooning, lobular inflammation, and liver fibrosis. In addition, ipragliflozin upregulated mitochondrial transport-related and antioxidant defensive system-related genes in the liver. Among 2555 mouse miRNA probes, miR-19b-3p was commonly differentially expressed with ipragliflozin treatment for 5 weeks in both the liver and serum but in different directions, with a decrease in the liver and increase in the serum. Therefore, ipragliflozin can improve NASH development likely through the antioxidative stress pathway and by regulating miR-19b-3p.