Cargando…

Diagnosis of Thyroid Nodules Based on Image Enhancement and Deep Neural Networks

The diagnosis of thyroid nodules at an early stage is a challenging task. Manual diagnosis of thyroid nodules is labor-intensive and time-consuming. Meanwhile, due to the difference of instruments and technical personnel, the original thyroid nodule ultrasound images collected are very different. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Xuesi, Zhang, Lina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863471/
https://www.ncbi.nlm.nih.gov/pubmed/35211165
http://dx.doi.org/10.1155/2022/5582029
Descripción
Sumario:The diagnosis of thyroid nodules at an early stage is a challenging task. Manual diagnosis of thyroid nodules is labor-intensive and time-consuming. Meanwhile, due to the difference of instruments and technical personnel, the original thyroid nodule ultrasound images collected are very different. In order to make better use of ultrasound image information of thyroid nodules, some image processing methods are indispensable. In this paper, we developed a method for automatic thyroid nodule classification based on image enhancement and deep neural networks. The selected image enhancement method is histogram equalization, and the neural networks have four-layer network nodes in our experiments. The dataset in this paper consists of thyroid nodule images of 508 patients. The data are divided into 80% training and 20% validation sets. A comparison result demonstrates that our method can achieve a better performance than other normal machine learning methods. The experimental results show that our method has achieved 0.901961 accuracy, 0.894737 precision, 1 recall, and 0.944444 F1-score. At the same time, we also considered the influence of network structure, activation function of network nodes, number of training iterations, and other factors on the classification results. The experimental results show that the optimal network structure is 2500-40-2-1, the optimal activation function is logistic function, and the best number of training iterations is 500.