Cargando…
An Automated Toxicity Classification on Social Media Using LSTM and Word Embedding
The automated identification of toxicity in texts is a crucial area in text analysis since the social media world is replete with unfiltered content that ranges from mildly abusive to downright hateful. Researchers have found an unintended bias and unfairness caused by training datasets, which cause...
Autores principales: | Alsharef, Ahmad, Aggarwal, Karan, Sonia, Koundal, Deepika, Alyami, Hashem, Ameyed, Darine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863472/ https://www.ncbi.nlm.nih.gov/pubmed/35211168 http://dx.doi.org/10.1155/2022/8467349 |
Ejemplares similares
-
Retracted: An Automated Toxicity Classification on Social Media Using LSTM and Word Embedding
por: Neuroscience, Computational Intelligence and
Publicado: (2023) -
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021) -
Thesaurus-based word embeddings for automated biomedical literature classification
por: Koutsomitropoulos, Dimitrios A., et al.
Publicado: (2021) -
Identifying tweets of personal health experience through word embedding and LSTM neural network
por: Jiang, Keyuan, et al.
Publicado: (2018) -
Review of ML and AutoML Solutions to Forecast Time-Series Data
por: Alsharef, Ahmad, et al.
Publicado: (2022)