Cargando…

Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome

The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved f...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Susie Y., Witzel, Thomas, Keil, Boris, Scholz, Alina, Davids, Mathias, Dietz, Peter, Rummert, Elmar, Ramb, Rebecca, Kirsch, John E., Yendiki, Anastasia, Fan, Qiuyun, Tian, Qiyuan, Ramos-Llordén, Gabriel, Lee, Hong-Hsi, Nummenmaa, Aapo, Bilgic, Berkin, Setsompop, Kawin, Wang, Fuyixue, Avram, Alexandru V., Komlosh, Michal, Benjamini, Dan, Magdoom, Kulam Najmudeen, Pathak, Sudhir, Schneider, Walter, Novikov, Dmitry S., Fieremans, Els, Tounekti, Slimane, Mekkaoui, Choukri, Augustinack, Jean, Berger, Daniel, Shapson-Coe, Alexander, Lichtman, Jeff, Basser, Peter J., Wald, Lawrence L., Rosen, Bruce R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863543/
https://www.ncbi.nlm.nih.gov/pubmed/34464739
http://dx.doi.org/10.1016/j.neuroimage.2021.118530
_version_ 1784655258669023232
author Huang, Susie Y.
Witzel, Thomas
Keil, Boris
Scholz, Alina
Davids, Mathias
Dietz, Peter
Rummert, Elmar
Ramb, Rebecca
Kirsch, John E.
Yendiki, Anastasia
Fan, Qiuyun
Tian, Qiyuan
Ramos-Llordén, Gabriel
Lee, Hong-Hsi
Nummenmaa, Aapo
Bilgic, Berkin
Setsompop, Kawin
Wang, Fuyixue
Avram, Alexandru V.
Komlosh, Michal
Benjamini, Dan
Magdoom, Kulam Najmudeen
Pathak, Sudhir
Schneider, Walter
Novikov, Dmitry S.
Fieremans, Els
Tounekti, Slimane
Mekkaoui, Choukri
Augustinack, Jean
Berger, Daniel
Shapson-Coe, Alexander
Lichtman, Jeff
Basser, Peter J.
Wald, Lawrence L.
Rosen, Bruce R.
author_facet Huang, Susie Y.
Witzel, Thomas
Keil, Boris
Scholz, Alina
Davids, Mathias
Dietz, Peter
Rummert, Elmar
Ramb, Rebecca
Kirsch, John E.
Yendiki, Anastasia
Fan, Qiuyun
Tian, Qiyuan
Ramos-Llordén, Gabriel
Lee, Hong-Hsi
Nummenmaa, Aapo
Bilgic, Berkin
Setsompop, Kawin
Wang, Fuyixue
Avram, Alexandru V.
Komlosh, Michal
Benjamini, Dan
Magdoom, Kulam Najmudeen
Pathak, Sudhir
Schneider, Walter
Novikov, Dmitry S.
Fieremans, Els
Tounekti, Slimane
Mekkaoui, Choukri
Augustinack, Jean
Berger, Daniel
Shapson-Coe, Alexander
Lichtman, Jeff
Basser, Peter J.
Wald, Lawrence L.
Rosen, Bruce R.
author_sort Huang, Susie Y.
collection PubMed
description The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain –from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.
format Online
Article
Text
id pubmed-8863543
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-88635432022-11-01 Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome Huang, Susie Y. Witzel, Thomas Keil, Boris Scholz, Alina Davids, Mathias Dietz, Peter Rummert, Elmar Ramb, Rebecca Kirsch, John E. Yendiki, Anastasia Fan, Qiuyun Tian, Qiyuan Ramos-Llordén, Gabriel Lee, Hong-Hsi Nummenmaa, Aapo Bilgic, Berkin Setsompop, Kawin Wang, Fuyixue Avram, Alexandru V. Komlosh, Michal Benjamini, Dan Magdoom, Kulam Najmudeen Pathak, Sudhir Schneider, Walter Novikov, Dmitry S. Fieremans, Els Tounekti, Slimane Mekkaoui, Choukri Augustinack, Jean Berger, Daniel Shapson-Coe, Alexander Lichtman, Jeff Basser, Peter J. Wald, Lawrence L. Rosen, Bruce R. Neuroimage Article The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain –from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity. 2021-11 2021-08-28 /pmc/articles/PMC8863543/ /pubmed/34464739 http://dx.doi.org/10.1016/j.neuroimage.2021.118530 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Article
Huang, Susie Y.
Witzel, Thomas
Keil, Boris
Scholz, Alina
Davids, Mathias
Dietz, Peter
Rummert, Elmar
Ramb, Rebecca
Kirsch, John E.
Yendiki, Anastasia
Fan, Qiuyun
Tian, Qiyuan
Ramos-Llordén, Gabriel
Lee, Hong-Hsi
Nummenmaa, Aapo
Bilgic, Berkin
Setsompop, Kawin
Wang, Fuyixue
Avram, Alexandru V.
Komlosh, Michal
Benjamini, Dan
Magdoom, Kulam Najmudeen
Pathak, Sudhir
Schneider, Walter
Novikov, Dmitry S.
Fieremans, Els
Tounekti, Slimane
Mekkaoui, Choukri
Augustinack, Jean
Berger, Daniel
Shapson-Coe, Alexander
Lichtman, Jeff
Basser, Peter J.
Wald, Lawrence L.
Rosen, Bruce R.
Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
title Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
title_full Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
title_fullStr Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
title_full_unstemmed Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
title_short Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
title_sort connectome 2.0: developing the next-generation ultra-high gradient strength human mri scanner for bridging studies of the micro-, meso- and macro-connectome
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863543/
https://www.ncbi.nlm.nih.gov/pubmed/34464739
http://dx.doi.org/10.1016/j.neuroimage.2021.118530
work_keys_str_mv AT huangsusiey connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT witzelthomas connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT keilboris connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT scholzalina connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT davidsmathias connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT dietzpeter connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT rummertelmar connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT rambrebecca connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT kirschjohne connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT yendikianastasia connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT fanqiuyun connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT tianqiyuan connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT ramosllordengabriel connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT leehonghsi connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT nummenmaaaapo connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT bilgicberkin connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT setsompopkawin connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT wangfuyixue connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT avramalexandruv connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT komloshmichal connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT benjaminidan connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT magdoomkulamnajmudeen connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT pathaksudhir connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT schneiderwalter connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT novikovdmitrys connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT fieremansels connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT tounektislimane connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT mekkaouichoukri connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT augustinackjean connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT bergerdaniel connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT shapsoncoealexander connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT lichtmanjeff connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT basserpeterj connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT waldlawrencel connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome
AT rosenbrucer connectome20developingthenextgenerationultrahighgradientstrengthhumanmriscannerforbridgingstudiesofthemicromesoandmacroconnectome