Cargando…

Discriminants and Semi-orthogonal Decompositions

The derived categories of toric varieties admit semi-orthogonal decompositions coming from wall-crossing in GIT. We prove that these decompositions satisfy a Jordan–Hölder property: the subcategories that appear, and their multiplicities, are independent of the choices made. For Calabi–Yau toric var...

Descripción completa

Detalles Bibliográficos
Autores principales: Kite, Alex, Segal, Ed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863775/
https://www.ncbi.nlm.nih.gov/pubmed/35250038
http://dx.doi.org/10.1007/s00220-021-04298-2
Descripción
Sumario:The derived categories of toric varieties admit semi-orthogonal decompositions coming from wall-crossing in GIT. We prove that these decompositions satisfy a Jordan–Hölder property: the subcategories that appear, and their multiplicities, are independent of the choices made. For Calabi–Yau toric varieties wall-crossing instead gives derived equivalences and autoequivalences, and mirror symmetry relates these to monodromy around the GKZ discriminant locus. We formulate a conjecture equating intersection multiplicities in the discriminant with the multiplicities appearing in certain semi-orthogonal decompositions. We then prove this conjecture in some cases.