Cargando…
Smooth velocity fields for tracking climate change
Describing the spatial velocity of climate change is essential to assessing the challenge of natural and human systems to follow its pace by adapting or migrating sufficiently fast. We propose a fully-determined approach, “MATCH”, to calculate a realistic and continuous velocity field of any climate...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863831/ https://www.ncbi.nlm.nih.gov/pubmed/35194131 http://dx.doi.org/10.1038/s41598-022-07056-z |
Sumario: | Describing the spatial velocity of climate change is essential to assessing the challenge of natural and human systems to follow its pace by adapting or migrating sufficiently fast. We propose a fully-determined approach, “MATCH”, to calculate a realistic and continuous velocity field of any climate parameter, without the need for ad hoc assumptions. We apply this approach to the displacement of isotherms predicted by global and regional climate models between 1950 and 2100 under the IPCC-AR5 RCP 8.5 emission scenario, and show that it provides detailed velocity patterns especially at the regional scale. This method thus favors comparisons between models as well as the analysis of regional or local features. Furthermore, the trajectories obtained using the MATCH approach are less sensitive to inter-annual fluctuations and therefore allow us to introduce a trajectory regularity index, offering a quantitative perspective on the discussion of climate sinks and sources. |
---|