Cargando…

Organic electrochemical neurons and synapses with ion mediated spiking

Future brain-machine interfaces, prosthetics, and intelligent soft robotics will require integrating artificial neuromorphic devices with biological systems. Due to their poor biocompatibility, circuit complexity, low energy efficiency, and operating principles fundamentally different from the ion s...

Descripción completa

Detalles Bibliográficos
Autores principales: Harikesh, Padinhare Cholakkal, Yang, Chi-Yuan, Tu, Deyu, Gerasimov, Jennifer Y., Dar, Abdul Manan, Armada-Moreira, Adam, Massetti, Matteo, Kroon, Renee, Bliman, David, Olsson, Roger, Stavrinidou, Eleni, Berggren, Magnus, Fabiano, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863887/
https://www.ncbi.nlm.nih.gov/pubmed/35194026
http://dx.doi.org/10.1038/s41467-022-28483-6
_version_ 1784655331710730240
author Harikesh, Padinhare Cholakkal
Yang, Chi-Yuan
Tu, Deyu
Gerasimov, Jennifer Y.
Dar, Abdul Manan
Armada-Moreira, Adam
Massetti, Matteo
Kroon, Renee
Bliman, David
Olsson, Roger
Stavrinidou, Eleni
Berggren, Magnus
Fabiano, Simone
author_facet Harikesh, Padinhare Cholakkal
Yang, Chi-Yuan
Tu, Deyu
Gerasimov, Jennifer Y.
Dar, Abdul Manan
Armada-Moreira, Adam
Massetti, Matteo
Kroon, Renee
Bliman, David
Olsson, Roger
Stavrinidou, Eleni
Berggren, Magnus
Fabiano, Simone
author_sort Harikesh, Padinhare Cholakkal
collection PubMed
description Future brain-machine interfaces, prosthetics, and intelligent soft robotics will require integrating artificial neuromorphic devices with biological systems. Due to their poor biocompatibility, circuit complexity, low energy efficiency, and operating principles fundamentally different from the ion signal modulation of biology, traditional Silicon-based neuromorphic implementations have limited bio-integration potential. Here, we report the first organic electrochemical neurons (OECNs) with ion-modulated spiking, based on all-printed complementary organic electrochemical transistors. We demonstrate facile bio-integration of OECNs with Venus Flytrap (Dionaea muscipula) to induce lobe closure upon input stimuli. The OECNs can also be integrated with all-printed organic electrochemical synapses (OECSs), exhibiting short-term plasticity with paired-pulse facilitation and long-term plasticity with retention >1000 s, facilitating Hebbian learning. These soft and flexible OECNs operate below 0.6 V and respond to multiple stimuli, defining a new vista for localized artificial neuronal systems possible to integrate with bio-signaling systems of plants, invertebrates, and vertebrates.
format Online
Article
Text
id pubmed-8863887
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88638872022-03-17 Organic electrochemical neurons and synapses with ion mediated spiking Harikesh, Padinhare Cholakkal Yang, Chi-Yuan Tu, Deyu Gerasimov, Jennifer Y. Dar, Abdul Manan Armada-Moreira, Adam Massetti, Matteo Kroon, Renee Bliman, David Olsson, Roger Stavrinidou, Eleni Berggren, Magnus Fabiano, Simone Nat Commun Article Future brain-machine interfaces, prosthetics, and intelligent soft robotics will require integrating artificial neuromorphic devices with biological systems. Due to their poor biocompatibility, circuit complexity, low energy efficiency, and operating principles fundamentally different from the ion signal modulation of biology, traditional Silicon-based neuromorphic implementations have limited bio-integration potential. Here, we report the first organic electrochemical neurons (OECNs) with ion-modulated spiking, based on all-printed complementary organic electrochemical transistors. We demonstrate facile bio-integration of OECNs with Venus Flytrap (Dionaea muscipula) to induce lobe closure upon input stimuli. The OECNs can also be integrated with all-printed organic electrochemical synapses (OECSs), exhibiting short-term plasticity with paired-pulse facilitation and long-term plasticity with retention >1000 s, facilitating Hebbian learning. These soft and flexible OECNs operate below 0.6 V and respond to multiple stimuli, defining a new vista for localized artificial neuronal systems possible to integrate with bio-signaling systems of plants, invertebrates, and vertebrates. Nature Publishing Group UK 2022-02-22 /pmc/articles/PMC8863887/ /pubmed/35194026 http://dx.doi.org/10.1038/s41467-022-28483-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Harikesh, Padinhare Cholakkal
Yang, Chi-Yuan
Tu, Deyu
Gerasimov, Jennifer Y.
Dar, Abdul Manan
Armada-Moreira, Adam
Massetti, Matteo
Kroon, Renee
Bliman, David
Olsson, Roger
Stavrinidou, Eleni
Berggren, Magnus
Fabiano, Simone
Organic electrochemical neurons and synapses with ion mediated spiking
title Organic electrochemical neurons and synapses with ion mediated spiking
title_full Organic electrochemical neurons and synapses with ion mediated spiking
title_fullStr Organic electrochemical neurons and synapses with ion mediated spiking
title_full_unstemmed Organic electrochemical neurons and synapses with ion mediated spiking
title_short Organic electrochemical neurons and synapses with ion mediated spiking
title_sort organic electrochemical neurons and synapses with ion mediated spiking
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863887/
https://www.ncbi.nlm.nih.gov/pubmed/35194026
http://dx.doi.org/10.1038/s41467-022-28483-6
work_keys_str_mv AT harikeshpadinharecholakkal organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT yangchiyuan organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT tudeyu organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT gerasimovjennifery organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT darabdulmanan organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT armadamoreiraadam organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT massettimatteo organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT kroonrenee organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT blimandavid organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT olssonroger organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT stavrinidoueleni organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT berggrenmagnus organicelectrochemicalneuronsandsynapseswithionmediatedspiking
AT fabianosimone organicelectrochemicalneuronsandsynapseswithionmediatedspiking