Cargando…
Backtesting VaR under the COVID-19 sudden changes in volatility
We analyze the impact of the COVID-19 pandemic on the conditional variance of stock returns. We look at this effect from a global perspective, so we employ series of major stock market and sector indices. We use the Hansen’s Skewed-t distribution with EGARCH extended to control for sudden changes in...
Autores principales: | Castillo, Brenda, León, Ángel, Ñíguez, Trino-Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863910/ https://www.ncbi.nlm.nih.gov/pubmed/35221805 http://dx.doi.org/10.1016/j.frl.2021.102024 |
Ejemplares similares
-
Finding #1 stocks: screening, backtesting, and time-proven strategies
por: Matras, Kevin
Publicado: (2011) -
Deep learning in the stock market—a systematic survey of practice, backtesting, and applications
por: Olorunnimbe, Kenniy, et al.
Publicado: (2022) -
Comparison of Value at Risk (VaR) Multivariate Forecast Models
por: Müller, Fernanda Maria, et al.
Publicado: (2022) -
Modelling and forecasting risk dependence and portfolio VaR for cryptocurrencies
por: Cheng, Jie
Publicado: (2023) -
Open grid model of Australia’s National Electricity Market allowing backtesting against historic data
por: Xenophon, Aleksis, et al.
Publicado: (2018)