Cargando…
Heteroscedastic sparse Gaussian process regression-based stochastic material model for plastic structural analysis
Describing the material flow stress and the associated uncertainty is essential for the plastic stochastic structural analysis. In this context, a data-driven approach-heteroscedastic sparse Gaussian process regression (HSGPR) with enhanced efficiency is introduced to model the material flow stress....
Autores principales: | Chen, Baixi, Shen, Luming, Zhang, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864002/ https://www.ncbi.nlm.nih.gov/pubmed/35194067 http://dx.doi.org/10.1038/s41598-022-06870-9 |
Ejemplares similares
-
Correlated product of experts for sparse Gaussian process regression
por: Schürch, Manuel, et al.
Publicado: (2023) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow
por: Estévez, José, et al.
Publicado: (2021) -
Efficient inference of synaptic plasticity rule with Gaussian process regression
por: Chen, Shirui, et al.
Publicado: (2023) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016)