Cargando…
Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images
Although the emergence of multi-parametric magnetic resonance imaging (mpMRI) has had a profound impact on the diagnosis of prostate cancers (PCa), analyzing these images remains still complex even for experts. This paper proposes a fully automatic system based on Deep Learning that performs localiz...
Autores principales: | Pellicer-Valero, Oscar J., Marenco Jiménez, José L., Gonzalez-Perez, Victor, Casanova Ramón-Borja, Juan Luis, Martín García, Isabel, Barrios Benito, María, Pelechano Gómez, Paula, Rubio-Briones, José, Rupérez, María José, Martín-Guerrero, José D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864013/ https://www.ncbi.nlm.nih.gov/pubmed/35194056 http://dx.doi.org/10.1038/s41598-022-06730-6 |
Ejemplares similares
-
Detecting recurrent prostate Cancer using multiparametric MRI, influence of PSA and Gleason grade
por: Venkatesan, Aradhana M., et al.
Publicado: (2021) -
Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies
por: Lucas, Marit, et al.
Publicado: (2019) -
Automatic Prostate Gleason Grading Using Pyramid Semantic Parsing Network in Digital Histopathology
por: Qiu, Yali, et al.
Publicado: (2022) -
Prognostic Utility of the Gleason Grading System Revisions and Histopathological Factors Beyond Gleason Grade
por: Zelic, Renata, et al.
Publicado: (2022) -
Role of Multiparametric Prostate Magnetic Resonance Imaging before Confirmatory Biopsy in Assessing the Risk of Prostate Cancer Progression during Active Surveillance
por: Salguero, Joseba, et al.
Publicado: (2021)