Cargando…

Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics

The spread of dengue and other arboviruses constitutes an expanding global health threat. The extensive heterogeneity in population distribution and potential complexity of movement in megacities of low and middle-income countries challenges predictive modeling, even as its importance to disease spr...

Descripción completa

Detalles Bibliográficos
Autores principales: Romeo-Aznar, Victoria, Picinini Freitas, Laís, Gonçalves Cruz, Oswaldo, King, Aaron A., Pascual, Mercedes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864019/
https://www.ncbi.nlm.nih.gov/pubmed/35194017
http://dx.doi.org/10.1038/s41467-022-28231-w
Descripción
Sumario:The spread of dengue and other arboviruses constitutes an expanding global health threat. The extensive heterogeneity in population distribution and potential complexity of movement in megacities of low and middle-income countries challenges predictive modeling, even as its importance to disease spread is clearer than ever. Using surveillance data at fine resolution following the emergence of the DENV4 dengue serotype in Rio de Janeiro, we document a pattern in the size of successive epidemics that is invariant to the scale of spatial aggregation. This pattern emerges from the combined effect of herd immunity and seasonal transmission, and is strongly driven by variation in population density at sub-kilometer scales. It is apparent only when the landscape is stratified by population density and not by spatial proximity as has been common practice. Models that exploit this emergent simplicity should afford improved predictions of the local size of successive epidemic waves.