Cargando…
Single-cell RNA Sequencing Reveals Thoracolumbar Vertebra Heterogeneity and Rib-genesis in Pigs
Development of thoracolumbar vertebra (TLV) and rib primordium (RP) is a common evolutionary feature across vertebrates, although whole-organism analysis of the expression dynamics of TLV- and RP-related genes has been lacking. Here, we investigated the single-cell transcriptome landscape of thoraci...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864194/ https://www.ncbi.nlm.nih.gov/pubmed/34775075 http://dx.doi.org/10.1016/j.gpb.2021.09.008 |
Sumario: | Development of thoracolumbar vertebra (TLV) and rib primordium (RP) is a common evolutionary feature across vertebrates, although whole-organism analysis of the expression dynamics of TLV- and RP-related genes has been lacking. Here, we investigated the single-cell transcriptome landscape of thoracic vertebra (TV), lumbar vertebra (LV), and RP cells from a pig embryo at 27 days post-fertilization (dpf) and identified six cell types with distinct gene expression signatures. In-depth dissection of the gene expression dynamics and RNA velocity revealed a coupled process of osteogenesis and angiogenesis during TLV and RP development. Further analysis of cell type-specific and strand-specific expression uncovered the extremely high level of HOXA10 3′-UTR sequence specific to osteoblasts of LV cells, which may function as anti-HOXA10-antisense by counteracting the HOXA10-antisense effect to determine TLV transition. Thus, this work provides a valuable resource for understanding embryonic osteogenesis and angiogenesis underlying vertebrate TLV and RP development at the cell type-specific resolution, which serves as a comprehensive view on the transcriptional profile of animal embryo development. |
---|