Cargando…

Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection

Vascular shrubs growing along the draw-down zones of saline lakes must develop adaptive mechanisms to cope with high salinity, erratic environmental conditions, and other biotic and abiotic stresses. Microbial endophytes from plants growing in these unique environments harbor diverse metabolic and g...

Descripción completa

Detalles Bibliográficos
Autores principales: Mutungi, Priscillar Mumo, Wekesa, Vitalis Wafula, Onguso, Justus, Kanga, Erustus, Baleba, Steve B. S., Boga, Hamadi Iddi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864308/
https://www.ncbi.nlm.nih.gov/pubmed/35222451
http://dx.doi.org/10.3389/fpls.2021.796847
_version_ 1784655435453693952
author Mutungi, Priscillar Mumo
Wekesa, Vitalis Wafula
Onguso, Justus
Kanga, Erustus
Baleba, Steve B. S.
Boga, Hamadi Iddi
author_facet Mutungi, Priscillar Mumo
Wekesa, Vitalis Wafula
Onguso, Justus
Kanga, Erustus
Baleba, Steve B. S.
Boga, Hamadi Iddi
author_sort Mutungi, Priscillar Mumo
collection PubMed
description Vascular shrubs growing along the draw-down zones of saline lakes must develop adaptive mechanisms to cope with high salinity, erratic environmental conditions, and other biotic and abiotic stresses. Microbial endophytes from plants growing in these unique environments harbor diverse metabolic and genetic profiles that play an important role in plant growth, health, and survival under stressful conditions. A variety of bacterial endophytes have been isolated from salt tolerant plants but their potential applications in agriculture have not been fully explored. To further address this gap, the present study sought to isolate culturable bacterial endophytes from shrubs growing along the draw-down zone of Lake Bogoria, a saline alkaline lake, and examined their functional characteristics and potential in the biocontrol of the bean root rot pathogen, Fusarium solani. We collected shrubs growing within 5 m distance from the shoreline of Lake Bogoria and isolated 69 bacterial endophytes. The endophytic bacteria were affiliated to three different phyla (Firmicutes, Proteobacteria, and Actinobacteria) with a bias in the genera, Bacillus, and they showed no tissue or plant specificity. All selected isolates were positive for catalase enzyme grown in 1.5 M NaCl; three isolates (B23, B19, and B53) produced indole acetic acid (IAA) and only one isolate, B23 did not solubilize phosphate on Pikovskaya agar. Isolates, B19 and B53 exhibited more than 50% of mycelial inhibition in the dual culture assay and completely inhibited the germination of F. solani spores in co-culture assays while two isolates, B07 and B39 had delayed fungal spore germination after an overnight incubation. All isolates were able to establish endophytic association in the roots, stems, and leaves of been seedlings in both seed soaking and drenching methods. Colonization of bean seedlings by the bacterial endophytes, B19 and B53 resulted in the biocontrol of F. solani in planta, reduced disease severity and incidence, and significantly increased both root and shoot biomass compared to the control. Taxonomic identification using 16S rRNA revealed that the two isolates belong to Enterobacter hormaechei subsp., Xiangfangensis and Bacillus megaterium. Our results demonstrate the potential use of these two isolates in the biocontrol of the bean root rot pathogen, F. solani and plant growth promotion.
format Online
Article
Text
id pubmed-8864308
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-88643082022-02-24 Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection Mutungi, Priscillar Mumo Wekesa, Vitalis Wafula Onguso, Justus Kanga, Erustus Baleba, Steve B. S. Boga, Hamadi Iddi Front Plant Sci Plant Science Vascular shrubs growing along the draw-down zones of saline lakes must develop adaptive mechanisms to cope with high salinity, erratic environmental conditions, and other biotic and abiotic stresses. Microbial endophytes from plants growing in these unique environments harbor diverse metabolic and genetic profiles that play an important role in plant growth, health, and survival under stressful conditions. A variety of bacterial endophytes have been isolated from salt tolerant plants but their potential applications in agriculture have not been fully explored. To further address this gap, the present study sought to isolate culturable bacterial endophytes from shrubs growing along the draw-down zone of Lake Bogoria, a saline alkaline lake, and examined their functional characteristics and potential in the biocontrol of the bean root rot pathogen, Fusarium solani. We collected shrubs growing within 5 m distance from the shoreline of Lake Bogoria and isolated 69 bacterial endophytes. The endophytic bacteria were affiliated to three different phyla (Firmicutes, Proteobacteria, and Actinobacteria) with a bias in the genera, Bacillus, and they showed no tissue or plant specificity. All selected isolates were positive for catalase enzyme grown in 1.5 M NaCl; three isolates (B23, B19, and B53) produced indole acetic acid (IAA) and only one isolate, B23 did not solubilize phosphate on Pikovskaya agar. Isolates, B19 and B53 exhibited more than 50% of mycelial inhibition in the dual culture assay and completely inhibited the germination of F. solani spores in co-culture assays while two isolates, B07 and B39 had delayed fungal spore germination after an overnight incubation. All isolates were able to establish endophytic association in the roots, stems, and leaves of been seedlings in both seed soaking and drenching methods. Colonization of bean seedlings by the bacterial endophytes, B19 and B53 resulted in the biocontrol of F. solani in planta, reduced disease severity and incidence, and significantly increased both root and shoot biomass compared to the control. Taxonomic identification using 16S rRNA revealed that the two isolates belong to Enterobacter hormaechei subsp., Xiangfangensis and Bacillus megaterium. Our results demonstrate the potential use of these two isolates in the biocontrol of the bean root rot pathogen, F. solani and plant growth promotion. Frontiers Media S.A. 2022-02-09 /pmc/articles/PMC8864308/ /pubmed/35222451 http://dx.doi.org/10.3389/fpls.2021.796847 Text en Copyright © 2022 Mutungi, Wekesa, Onguso, Kanga, Baleba and Boga. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Mutungi, Priscillar Mumo
Wekesa, Vitalis Wafula
Onguso, Justus
Kanga, Erustus
Baleba, Steve B. S.
Boga, Hamadi Iddi
Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection
title Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection
title_full Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection
title_fullStr Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection
title_full_unstemmed Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection
title_short Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection
title_sort culturable bacterial endophytes associated with shrubs growing along the draw-down zone of lake bogoria, kenya: assessment of antifungal potential against fusarium solani and induction of bean root rot protection
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864308/
https://www.ncbi.nlm.nih.gov/pubmed/35222451
http://dx.doi.org/10.3389/fpls.2021.796847
work_keys_str_mv AT mutungipriscillarmumo culturablebacterialendophytesassociatedwithshrubsgrowingalongthedrawdownzoneoflakebogoriakenyaassessmentofantifungalpotentialagainstfusariumsolaniandinductionofbeanrootrotprotection
AT wekesavitaliswafula culturablebacterialendophytesassociatedwithshrubsgrowingalongthedrawdownzoneoflakebogoriakenyaassessmentofantifungalpotentialagainstfusariumsolaniandinductionofbeanrootrotprotection
AT ongusojustus culturablebacterialendophytesassociatedwithshrubsgrowingalongthedrawdownzoneoflakebogoriakenyaassessmentofantifungalpotentialagainstfusariumsolaniandinductionofbeanrootrotprotection
AT kangaerustus culturablebacterialendophytesassociatedwithshrubsgrowingalongthedrawdownzoneoflakebogoriakenyaassessmentofantifungalpotentialagainstfusariumsolaniandinductionofbeanrootrotprotection
AT balebastevebs culturablebacterialendophytesassociatedwithshrubsgrowingalongthedrawdownzoneoflakebogoriakenyaassessmentofantifungalpotentialagainstfusariumsolaniandinductionofbeanrootrotprotection
AT bogahamadiiddi culturablebacterialendophytesassociatedwithshrubsgrowingalongthedrawdownzoneoflakebogoriakenyaassessmentofantifungalpotentialagainstfusariumsolaniandinductionofbeanrootrotprotection