Cargando…

Coming Together of Bayesian Inference and Skew Spherical Data

This paper presents Bayesian directional data modeling via the skew-rotationally-symmetric Fisher-von Mises-Langevin (FvML) distribution. The prior distributions for the parameters are a pivotal building block in Bayesian analysis, therefore, the impact of the proposed priors will be quantified usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakhaei Rad, Najmeh, Bekker, Andriette, Arashi, Mohammad, Ley, Christophe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864337/
https://www.ncbi.nlm.nih.gov/pubmed/35224481
http://dx.doi.org/10.3389/fdata.2021.769726
Descripción
Sumario:This paper presents Bayesian directional data modeling via the skew-rotationally-symmetric Fisher-von Mises-Langevin (FvML) distribution. The prior distributions for the parameters are a pivotal building block in Bayesian analysis, therefore, the impact of the proposed priors will be quantified using the Wasserstein Impact Measure (WIM) to guide the practitioner in the implementation process. For the computation of the posterior, modifications of Gibbs and slice samplings are applied for generating samples. We demonstrate the applicability of our contribution via synthetic and real data analyses. Our investigation paves the way for Bayesian analysis of skew circular and spherical data.