Cargando…
Sparsifying priors for Bayesian uncertainty quantification in model discovery
We propose a probabilistic model discovery method for identifying ordinary differential equations governing the dynamics of observed multivariate data. Our method is based on the sparse identification of nonlinear dynamics (SINDy) framework, where models are expressed as sparse linear combinations o...
Autores principales: | Hirsh, Seth M., Barajas-Solano, David A., Kutz, J. Nathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864363/ https://www.ncbi.nlm.nih.gov/pubmed/35223066 http://dx.doi.org/10.1098/rsos.211823 |
Ejemplares similares
-
Bayesian approach to model uncertainty
por: Tsangarides, Charalambos G
Publicado: (2004) -
On cheap entropy-sparsified regression learning
por: Horenko, Illia, et al.
Publicado: (2022) -
Handbook of uncertainty quantification
por: Ghanem, Roger, et al.
Publicado: (2019) -
Handbook of uncertainty quantification
por: Ghanem, Roger, et al.
Publicado: (2017) -
On the Quantification of Model Uncertainty: A Bayesian Perspective
por: Kaplan, David
Publicado: (2021)