Cargando…
moc-6/MOCS2A is necessary for molybdenum cofactor synthesis in C. elegans
Molybdenum cofactor (Moco) is an essential prosthetic group that mediates the activity of 4 animal oxidases and is required for viability. Humans with mutations in the genes encoding Moco-biosynthetic enzymes suffer from Moco deficiency, a neonatal lethal inborn error of metabolism. Caenorhabditis e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864482/ https://www.ncbi.nlm.nih.gov/pubmed/35224462 http://dx.doi.org/10.17912/micropub.biology.000531 |
Sumario: | Molybdenum cofactor (Moco) is an essential prosthetic group that mediates the activity of 4 animal oxidases and is required for viability. Humans with mutations in the genes encoding Moco-biosynthetic enzymes suffer from Moco deficiency, a neonatal lethal inborn error of metabolism. Caenorhabditis elegans has recently emerged as a useful and tractable genetic discovery engine for Moco biology. Here, we identify and characterize K10D2.7/moc-6, the C. elegans ortholog of human MOCS2A, a sulfur-carrier protein essential for Moco synthesis. Using CRISPR/Cas9 gene editing, we generate 3 null mutations in K10D2.7/moc-6 and with these alleles genetically demonstrate that K10D2.7/moc-6 is necessary for endogenous Moco synthesis in C. elegans. |
---|