Cargando…
Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study
OBJECTIVE: Bioprosthetic heart valves (BHVs) are commonly used in surgical and percutaneous valve replacement. The durability of percutaneous valve replacement is unknown, but surgical valves have been shown to require reintervention after 10 to 15 years. Further, smaller-diameter surgical BHVs gene...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864557/ https://www.ncbi.nlm.nih.gov/pubmed/35211686 http://dx.doi.org/10.1016/j.xjon.2020.09.002 |
_version_ | 1784655483595915264 |
---|---|
author | Lee, Jae H. Scotten, Lawrence N. Hunt, Robert Caranasos, Thomas G. Vavalle, John P. Griffith, Boyce E. |
author_facet | Lee, Jae H. Scotten, Lawrence N. Hunt, Robert Caranasos, Thomas G. Vavalle, John P. Griffith, Boyce E. |
author_sort | Lee, Jae H. |
collection | PubMed |
description | OBJECTIVE: Bioprosthetic heart valves (BHVs) are commonly used in surgical and percutaneous valve replacement. The durability of percutaneous valve replacement is unknown, but surgical valves have been shown to require reintervention after 10 to 15 years. Further, smaller-diameter surgical BHVs generally experience higher rates of prosthesis–patient mismatch, which leads to higher rates of failure. Bioprosthetic aortic valves can flutter in systole, and fluttering is associated with fatigue and failure in flexible structures. The determinants of flutter in BHVs have not been well characterized, despite their potential to influence durability. METHODS: We use an experimental pulse duplicator and a computational fluid-structure interaction model of this system to study the role of device geometry on BHV dynamics. The experimental system mimics physiological conditions, and the computational model enables precise control of leaflet biomechanics and flow conditions to isolate the effects of variations in BHV geometry on leaflet dynamics. RESULTS: Both experimental and computational models demonstrate that smaller-diameter BHVs yield markedly higher leaflet fluttering frequencies across a range of conditions. The computational model also predicts that fluttering frequency is directly related to leaflet thickness. A scaling model is introduced that rationalizes these findings. CONCLUSIONS: We systematically characterize the influence of BHV diameter and leaflet thickness on fluttering dynamics. Although this study does not determine how flutter influences device durability, increased flutter in smaller-diameter BHVs may explain how prosthesis–patient mismatch could induce BHV leaflet fatigue and failure. Ultimately, understanding the effects of device geometry on leaflet kinematics may lead to more durable valve replacements. |
format | Online Article Text |
id | pubmed-8864557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-88645572022-02-23 Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study Lee, Jae H. Scotten, Lawrence N. Hunt, Robert Caranasos, Thomas G. Vavalle, John P. Griffith, Boyce E. JTCVS Open Adult: Aortic Valve: Evolving Technology OBJECTIVE: Bioprosthetic heart valves (BHVs) are commonly used in surgical and percutaneous valve replacement. The durability of percutaneous valve replacement is unknown, but surgical valves have been shown to require reintervention after 10 to 15 years. Further, smaller-diameter surgical BHVs generally experience higher rates of prosthesis–patient mismatch, which leads to higher rates of failure. Bioprosthetic aortic valves can flutter in systole, and fluttering is associated with fatigue and failure in flexible structures. The determinants of flutter in BHVs have not been well characterized, despite their potential to influence durability. METHODS: We use an experimental pulse duplicator and a computational fluid-structure interaction model of this system to study the role of device geometry on BHV dynamics. The experimental system mimics physiological conditions, and the computational model enables precise control of leaflet biomechanics and flow conditions to isolate the effects of variations in BHV geometry on leaflet dynamics. RESULTS: Both experimental and computational models demonstrate that smaller-diameter BHVs yield markedly higher leaflet fluttering frequencies across a range of conditions. The computational model also predicts that fluttering frequency is directly related to leaflet thickness. A scaling model is introduced that rationalizes these findings. CONCLUSIONS: We systematically characterize the influence of BHV diameter and leaflet thickness on fluttering dynamics. Although this study does not determine how flutter influences device durability, increased flutter in smaller-diameter BHVs may explain how prosthesis–patient mismatch could induce BHV leaflet fatigue and failure. Ultimately, understanding the effects of device geometry on leaflet kinematics may lead to more durable valve replacements. Elsevier 2020-09-21 /pmc/articles/PMC8864557/ /pubmed/35211686 http://dx.doi.org/10.1016/j.xjon.2020.09.002 Text en © 2020 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Adult: Aortic Valve: Evolving Technology Lee, Jae H. Scotten, Lawrence N. Hunt, Robert Caranasos, Thomas G. Vavalle, John P. Griffith, Boyce E. Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study |
title | Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study |
title_full | Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study |
title_fullStr | Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study |
title_full_unstemmed | Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study |
title_short | Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study |
title_sort | bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: results from a combined experimental and computational modeling study |
topic | Adult: Aortic Valve: Evolving Technology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864557/ https://www.ncbi.nlm.nih.gov/pubmed/35211686 http://dx.doi.org/10.1016/j.xjon.2020.09.002 |
work_keys_str_mv | AT leejaeh bioprostheticaorticvalvediameterandthicknessaredirectlyrelatedtoleafletflutteringresultsfromacombinedexperimentalandcomputationalmodelingstudy AT scottenlawrencen bioprostheticaorticvalvediameterandthicknessaredirectlyrelatedtoleafletflutteringresultsfromacombinedexperimentalandcomputationalmodelingstudy AT huntrobert bioprostheticaorticvalvediameterandthicknessaredirectlyrelatedtoleafletflutteringresultsfromacombinedexperimentalandcomputationalmodelingstudy AT caranasosthomasg bioprostheticaorticvalvediameterandthicknessaredirectlyrelatedtoleafletflutteringresultsfromacombinedexperimentalandcomputationalmodelingstudy AT vavallejohnp bioprostheticaorticvalvediameterandthicknessaredirectlyrelatedtoleafletflutteringresultsfromacombinedexperimentalandcomputationalmodelingstudy AT griffithboycee bioprostheticaorticvalvediameterandthicknessaredirectlyrelatedtoleafletflutteringresultsfromacombinedexperimentalandcomputationalmodelingstudy |