Cargando…
Prediction of protein pK(a) with representation learning
The behavior of proteins is closely related to the protonation states of the residues. Therefore, prediction and measurement of pK(a) are essential to understand the basic functions of proteins. In this work, we develop a new empirical scheme for protein pK(a) prediction that is based on deep repres...
Autores principales: | Gokcan, Hatice, Isayev, Olexandr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864681/ https://www.ncbi.nlm.nih.gov/pubmed/35310485 http://dx.doi.org/10.1039/d1sc05610g |
Ejemplares similares
-
Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects
por: Jaffrelot Inizan, Théo, et al.
Publicado: (2023) -
Δ(2) machine learning for reaction property prediction
por: Zhao, Qiyuan, et al.
Publicado: (2023) -
The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions
por: Liu, Zhen, et al.
Publicado: (2023) -
Protein pK(a) Prediction
with Machine Learning
por: Cai, Zhitao, et al.
Publicado: (2021) -
Improving Small Molecule pK(
a
) Prediction Using Transfer Learning With Graph Neural Networks
por: Mayr, Fritz, et al.
Publicado: (2022)