Cargando…
Can super-resolution microscopy become a standard characterization technique for materials chemistry?
The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the stru...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864713/ https://www.ncbi.nlm.nih.gov/pubmed/35310478 http://dx.doi.org/10.1039/d1sc05506b |
_version_ | 1784655513498157056 |
---|---|
author | Dhiman, Shikha Andrian, Teodora Gonzalez, Beatriz Santiago Tholen, Marrit M. E. Wang, Yuyang Albertazzi, Lorenzo |
author_facet | Dhiman, Shikha Andrian, Teodora Gonzalez, Beatriz Santiago Tholen, Marrit M. E. Wang, Yuyang Albertazzi, Lorenzo |
author_sort | Dhiman, Shikha |
collection | PubMed |
description | The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio–Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines. |
format | Online Article Text |
id | pubmed-8864713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-88647132022-03-17 Can super-resolution microscopy become a standard characterization technique for materials chemistry? Dhiman, Shikha Andrian, Teodora Gonzalez, Beatriz Santiago Tholen, Marrit M. E. Wang, Yuyang Albertazzi, Lorenzo Chem Sci Chemistry The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio–Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines. The Royal Society of Chemistry 2021-12-01 /pmc/articles/PMC8864713/ /pubmed/35310478 http://dx.doi.org/10.1039/d1sc05506b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Dhiman, Shikha Andrian, Teodora Gonzalez, Beatriz Santiago Tholen, Marrit M. E. Wang, Yuyang Albertazzi, Lorenzo Can super-resolution microscopy become a standard characterization technique for materials chemistry? |
title | Can super-resolution microscopy become a standard characterization technique for materials chemistry? |
title_full | Can super-resolution microscopy become a standard characterization technique for materials chemistry? |
title_fullStr | Can super-resolution microscopy become a standard characterization technique for materials chemistry? |
title_full_unstemmed | Can super-resolution microscopy become a standard characterization technique for materials chemistry? |
title_short | Can super-resolution microscopy become a standard characterization technique for materials chemistry? |
title_sort | can super-resolution microscopy become a standard characterization technique for materials chemistry? |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864713/ https://www.ncbi.nlm.nih.gov/pubmed/35310478 http://dx.doi.org/10.1039/d1sc05506b |
work_keys_str_mv | AT dhimanshikha cansuperresolutionmicroscopybecomeastandardcharacterizationtechniqueformaterialschemistry AT andrianteodora cansuperresolutionmicroscopybecomeastandardcharacterizationtechniqueformaterialschemistry AT gonzalezbeatrizsantiago cansuperresolutionmicroscopybecomeastandardcharacterizationtechniqueformaterialschemistry AT tholenmarritme cansuperresolutionmicroscopybecomeastandardcharacterizationtechniqueformaterialschemistry AT wangyuyang cansuperresolutionmicroscopybecomeastandardcharacterizationtechniqueformaterialschemistry AT albertazzilorenzo cansuperresolutionmicroscopybecomeastandardcharacterizationtechniqueformaterialschemistry |