Cargando…
Greater trochanter morphology and association with patient demographics, surgical factors, and post-operative stem position: a retrospective assessment of 150 cementless THRs in 135 dogs
BACKGROUND: Total hip replacement (THR) in the gold standard surgical treatment for the canine hip. While it has been shown that greater trochanter morphology affects post-operative cementless stem position in humans, trochanter morphology and the effect on cementless stem position has not been exte...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864880/ https://www.ncbi.nlm.nih.gov/pubmed/35197062 http://dx.doi.org/10.1186/s12917-022-03174-y |
Sumario: | BACKGROUND: Total hip replacement (THR) in the gold standard surgical treatment for the canine hip. While it has been shown that greater trochanter morphology affects post-operative cementless stem position in humans, trochanter morphology and the effect on cementless stem position has not been extensively evaluated in dogs. The objective of this study was to classify greater trochanter morphology and identify potential associations between trochanter morphology and patient demographics, femoral canal geometry, surgical time, technique modifications, and post-operative stem position in client-owned dogs undergoing cementless THR. RESULTS: In this retrospective study, medical records and radiographs of 135 dogs undergoing 150 cementless total hip replacements from 2013 to 2020 were included. Trochanters were classified in the frontal plane using an ordinal grading system adapted from human THR. A Grade I trochanter denoted a trochanter positioned lateral to the periosteal surface of the lateral femoral cortex, whereas a Grade IV trochanter denoted a trochanter positioned medial to the anatomic axis of the femur. Associations between trochanter grade and other variables were examined using ANOVA, Kruskall-Wallis, or chi-squared tests. Significance was assumed at P ≤ .05. Trochanters were classified as follows: Grade I (44/150, 29.3%), Grade II (56/150, 37.4%), Grade III (44/150, 29.3%), Grade IV (6/150, 4.0%). Grade IV trochanters had lower anatomic lateral distal femoral angle (aLDFA; 91.0 ± 6.2°), angle of inclination (117.7 ± 10.5°), and canal flare index (1.53 ± 0.27). When compared to all groups, Grade IV trochanters were associated with longer surgical times (Grade IV: 227.0 ± 34.2 min; all grades: 183.2 ± 32.9 min) and technique modifications (Grade IV: 83.3%; all grades: 18%). Grade I trochanters had stems placed in valgus (− 1.8 ± 2.33°), whereas Grade II (0.52 ± 2.36°), III (0.77 ± 2.58°), and IV (0.67 ± 2.73°) trochanters exhibited varus stems. Depth of stem insertion was greater (11.2 ± 4.2 mm) for Grade IV trochanters. CONCLUSIONS: Trochanter grade was associated with post-operative stem alignment and translation in the frontal plane. Grade IV trochanters were associated with altered femoral geometry, increased surgical time, technique modifications, and stem insertion depth. Pre-operative greater trochanter classification may prove useful in identifying cases requiring prolonged surgical times or technique modifications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12917-022-03174-y. |
---|