Cargando…
RCoNet: Deformable Mutual Information Maximization and High-Order Uncertainty-Aware Learning for Robust COVID-19 Detection
The novel 2019 Coronavirus (COVID-19) infection has spread worldwide and is currently a major healthcare challenge around the world. Chest computed tomography (CT) and X-ray images have been well recognized to be two effective techniques for clinical COVID-19 disease diagnoses. Due to faster imaging...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864918/ https://www.ncbi.nlm.nih.gov/pubmed/34143745 http://dx.doi.org/10.1109/TNNLS.2021.3086570 |
Ejemplares similares
-
CRISPR/Cas9-Mediated Mutagenesis of RCO in Cardamine hirsuta
por: Alvim Kamei, Claire Lessa, et al.
Publicado: (2020) -
UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with Ensemble Monte Carlo Dropout for COVID-19 detection
por: Abdar, Moloud, et al.
Publicado: (2023) -
Conditional Rényi Divergence Saddlepoint and the Maximization of α-Mutual Information
por: Cai, Changxiao, et al.
Publicado: (2019) -
Coarse-to-Fine Adaptive People Detection for Video Sequences by Maximizing Mutual Information †
por: García-Martín, Álvaro, et al.
Publicado: (2018) -
Mutual Information between Order Book Layers
por: Libman, Daniel, et al.
Publicado: (2022)