Cargando…

Real-Time Diagnosis System of COVID-19 Using X-Ray Images and Deep Learning

The novel coronavirus named COVID-19 has quickly spread among humans worldwide, and the situation remains hazardous to the health system. The existence of this virus in the human body is identified through sputum or blood samples. Furthermore, computed tomography (CT) or X-ray has become a significa...

Descripción completa

Detalles Bibliográficos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IEEE 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864944/
https://www.ncbi.nlm.nih.gov/pubmed/35582211
http://dx.doi.org/10.1109/MITP.2020.3042379
Descripción
Sumario:The novel coronavirus named COVID-19 has quickly spread among humans worldwide, and the situation remains hazardous to the health system. The existence of this virus in the human body is identified through sputum or blood samples. Furthermore, computed tomography (CT) or X-ray has become a significant tool for quick diagnoses. Thus, it is essential to develop an online and real-time computer-aided diagnosis (CAD) approach to support physicians and avoid further spreading of the disease. In this research, a convolutional neural network (CNN) -based Residual neural network (ResNet50) has been employed to detect COVID-19 through chest X-ray images and achieved 98% accuracy. The proposed CAD system will receive the X-ray images from the remote hospitals/healthcare centers and perform diagnostic processes. Furthermore, the proposed CAD system uses advanced load balancer and resilience features to achieve fault tolerance with zero delays and perceives more infected cases during this pandemic.