Cargando…
LSTM-Based Emotion Detection Using Physiological Signals: IoT Framework for Healthcare and Distance Learning in COVID-19
Human emotions are strongly coupled with physical and mental health of any individual. While emotions exbibit complex physiological and biological phenomenon, yet studies reveal that physiological signals can be used as an indirect measure of emotions. In unprecedented circumstances alike the corona...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864945/ https://www.ncbi.nlm.nih.gov/pubmed/35582634 http://dx.doi.org/10.1109/JIOT.2020.3044031 |
Ejemplares similares
-
EEI-IoT: Edge-Enabled Intelligent IoT Framework for Early Detection of COVID-19 Threats
por: Deebak, B. D., et al.
Publicado: (2023) -
A Framework for Malicious Traffic Detection in IoT Healthcare Environment
por: Hussain, Faisal, et al.
Publicado: (2021) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Proactive Fault Prediction of Fog Devices Using LSTM-CRP Conceptual Framework for IoT Applications
por: H, Sabireen, et al.
Publicado: (2023) -
Knowledge Engineering Framework for IoT Robotics Applied to Smart Healthcare and Emotional Well-Being
por: Gyrard, Amelie, et al.
Publicado: (2021)