Cargando…
Deep learning shapes single-cell data analysis
Deep learning has tremendous potential in single-cell data analyses, but numerous challenges and possible new developments remain to be explored. In this commentary, we consider the progress, limitations, best practices and outlook of adapting deep learning methods for analysing single-cell data.
Autores principales: | Ma, Qin, Xu, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864973/ https://www.ncbi.nlm.nih.gov/pubmed/35197610 http://dx.doi.org/10.1038/s41580-022-00466-x |
Ejemplares similares
-
Deep learning analysis of single‐cell data in empowering clinical implementation
por: Ma, Anjun, et al.
Publicado: (2022) -
The use of single-cell multi-omics in immuno-oncology
por: Ma, Anjun, et al.
Publicado: (2022) -
Predicting origin for bone metastatic cancer using deep learning-based pathology
por: Fang, Mengjie, et al.
Publicado: (2023) -
Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics
por: Fang, Mengjie, et al.
Publicado: (2022) -
Diagonal integration of multimodal single-cell data: potential pitfalls and paths forward
por: Xu, Yang, et al.
Publicado: (2022)