Cargando…

Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum

Cholesterol is the most abundant lipid in the erythrocyte. During its blood-stage development, the malaria parasite establishes an active cholesterol gradient across the various membrane systems within the infected erythrocyte. Interestingly, some antimalarial compounds have recently been shown to d...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahiya, Avantika I., Bhatnagar, Suyash, Morrisey, Joanne M., Beck, Josh R., Vaidya, Akhil B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865471/
https://www.ncbi.nlm.nih.gov/pubmed/35196803
http://dx.doi.org/10.1128/spectrum.00158-22
_version_ 1784655639805427712
author Ahiya, Avantika I.
Bhatnagar, Suyash
Morrisey, Joanne M.
Beck, Josh R.
Vaidya, Akhil B.
author_facet Ahiya, Avantika I.
Bhatnagar, Suyash
Morrisey, Joanne M.
Beck, Josh R.
Vaidya, Akhil B.
author_sort Ahiya, Avantika I.
collection PubMed
description Cholesterol is the most abundant lipid in the erythrocyte. During its blood-stage development, the malaria parasite establishes an active cholesterol gradient across the various membrane systems within the infected erythrocyte. Interestingly, some antimalarial compounds have recently been shown to disrupt cholesterol homeostasis in the intraerythrocytic stages of Plasmodium falciparum. These studies point to the importance of cholesterol for parasite growth. Previously, reduction of cholesterol from the erythrocyte membrane by treatment with methyl-β-cyclodextrin (MβCD) was shown to inhibit parasite invasion and growth. In addition, MβCD treatment of trophozoite-stage P. falciparum was shown to result in parasite expulsion from the host cell. We have revisited these phenomena by using live video microscopy, ultrastructural analysis, and response to antimalarial compounds. By using time-lapse video microscopy of fluorescently tagged parasites, we show that MβCD treatment for just 30 min causes dramatic expulsion of the trophozoite-stage parasites. This forceful expulsion occurs within 10 s. Remarkably, the plasma membrane of the host cell from which the parasite has been expelled does not appear to be compromised. The parasitophorous vacuolar membrane (PVM) continued to surround the extruded parasite, but the PVM appeared damaged. Treatment with antimalarial compounds targeting PfATP4 or PfNCR1 prevented MβCD-mediated extrusion of the parasites, pointing to a potential role of cholesterol dynamics underlying the expulsion phenomena. We also confirmed the essential role of erythrocyte plasma membrane cholesterol for invasion and growth of P. falciparum. This defect can be partially complemented by cholesterol and desmosterol but not with epicholesterol, revealing stereospecificity underlying cholesterol function. Overall, our studies advance previous observations and reveal unusual cell biological features underlying cholesterol depletion of the infected erythrocyte plasma membrane. IMPORTANCE Malaria remains a major challenge in much of the world. Symptoms of malaria are caused by the growth of parasites belonging to Plasmodium spp. inside the red blood cells (RBCs), leading to their destruction. The parasite depends upon its host for much of its nutritional needs. Cholesterol is a major lipid in the RBC plasma membrane, which is the only source of this lipid for malaria parasites. We have previously shown that certain new antimalarial compounds disrupt cholesterol homeostasis in P. falciparum. Here, we use live time-lapse video microscopy to show dramatic expulsion of the parasite from the host RBC when the cholesterol content of the RBC is reduced. Remarkably, this expulsion is inhibited by the antimalarials that disrupt lipid homeostasis. We also show stereospecificity of cholesterol in supporting parasite growth inside RBC. Overall, these results point to a critical role of cholesterol in the physiology of malaria parasites.
format Online
Article
Text
id pubmed-8865471
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-88654712022-03-02 Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum Ahiya, Avantika I. Bhatnagar, Suyash Morrisey, Joanne M. Beck, Josh R. Vaidya, Akhil B. Microbiol Spectr Research Article Cholesterol is the most abundant lipid in the erythrocyte. During its blood-stage development, the malaria parasite establishes an active cholesterol gradient across the various membrane systems within the infected erythrocyte. Interestingly, some antimalarial compounds have recently been shown to disrupt cholesterol homeostasis in the intraerythrocytic stages of Plasmodium falciparum. These studies point to the importance of cholesterol for parasite growth. Previously, reduction of cholesterol from the erythrocyte membrane by treatment with methyl-β-cyclodextrin (MβCD) was shown to inhibit parasite invasion and growth. In addition, MβCD treatment of trophozoite-stage P. falciparum was shown to result in parasite expulsion from the host cell. We have revisited these phenomena by using live video microscopy, ultrastructural analysis, and response to antimalarial compounds. By using time-lapse video microscopy of fluorescently tagged parasites, we show that MβCD treatment for just 30 min causes dramatic expulsion of the trophozoite-stage parasites. This forceful expulsion occurs within 10 s. Remarkably, the plasma membrane of the host cell from which the parasite has been expelled does not appear to be compromised. The parasitophorous vacuolar membrane (PVM) continued to surround the extruded parasite, but the PVM appeared damaged. Treatment with antimalarial compounds targeting PfATP4 or PfNCR1 prevented MβCD-mediated extrusion of the parasites, pointing to a potential role of cholesterol dynamics underlying the expulsion phenomena. We also confirmed the essential role of erythrocyte plasma membrane cholesterol for invasion and growth of P. falciparum. This defect can be partially complemented by cholesterol and desmosterol but not with epicholesterol, revealing stereospecificity underlying cholesterol function. Overall, our studies advance previous observations and reveal unusual cell biological features underlying cholesterol depletion of the infected erythrocyte plasma membrane. IMPORTANCE Malaria remains a major challenge in much of the world. Symptoms of malaria are caused by the growth of parasites belonging to Plasmodium spp. inside the red blood cells (RBCs), leading to their destruction. The parasite depends upon its host for much of its nutritional needs. Cholesterol is a major lipid in the RBC plasma membrane, which is the only source of this lipid for malaria parasites. We have previously shown that certain new antimalarial compounds disrupt cholesterol homeostasis in P. falciparum. Here, we use live time-lapse video microscopy to show dramatic expulsion of the parasite from the host RBC when the cholesterol content of the RBC is reduced. Remarkably, this expulsion is inhibited by the antimalarials that disrupt lipid homeostasis. We also show stereospecificity of cholesterol in supporting parasite growth inside RBC. Overall, these results point to a critical role of cholesterol in the physiology of malaria parasites. American Society for Microbiology 2022-02-23 /pmc/articles/PMC8865471/ /pubmed/35196803 http://dx.doi.org/10.1128/spectrum.00158-22 Text en Copyright © 2022 Ahiya et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Ahiya, Avantika I.
Bhatnagar, Suyash
Morrisey, Joanne M.
Beck, Josh R.
Vaidya, Akhil B.
Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum
title Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum
title_full Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum
title_fullStr Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum
title_full_unstemmed Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum
title_short Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum
title_sort dramatic consequences of reducing erythrocyte membrane cholesterol on plasmodium falciparum
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865471/
https://www.ncbi.nlm.nih.gov/pubmed/35196803
http://dx.doi.org/10.1128/spectrum.00158-22
work_keys_str_mv AT ahiyaavantikai dramaticconsequencesofreducingerythrocytemembranecholesterolonplasmodiumfalciparum
AT bhatnagarsuyash dramaticconsequencesofreducingerythrocytemembranecholesterolonplasmodiumfalciparum
AT morriseyjoannem dramaticconsequencesofreducingerythrocytemembranecholesterolonplasmodiumfalciparum
AT beckjoshr dramaticconsequencesofreducingerythrocytemembranecholesterolonplasmodiumfalciparum
AT vaidyaakhilb dramaticconsequencesofreducingerythrocytemembranecholesterolonplasmodiumfalciparum