Cargando…

Learning as filtering: Implications for spike-based plasticity

Most normative models in computational neuroscience describe the task of learning as the optimisation of a cost function with respect to a set of parameters. However, learning as optimisation fails to account for a time-varying environment during the learning process and the resulting point estimate...

Descripción completa

Detalles Bibliográficos
Autores principales: Jegminat, Jannes, Surace, Simone Carlo, Pfister, Jean-Pascal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865661/
https://www.ncbi.nlm.nih.gov/pubmed/35196324
http://dx.doi.org/10.1371/journal.pcbi.1009721
Descripción
Sumario:Most normative models in computational neuroscience describe the task of learning as the optimisation of a cost function with respect to a set of parameters. However, learning as optimisation fails to account for a time-varying environment during the learning process and the resulting point estimate in parameter space does not account for uncertainty. Here, we frame learning as filtering, i.e., a principled method for including time and parameter uncertainty. We derive the filtering-based learning rule for a spiking neuronal network—the Synaptic Filter—and show its computational and biological relevance. For the computational relevance, we show that filtering improves the weight estimation performance compared to a gradient learning rule with optimal learning rate. The dynamics of the mean of the Synaptic Filter is consistent with spike-timing dependent plasticity (STDP) while the dynamics of the variance makes novel predictions regarding spike-timing dependent changes of EPSP variability. Moreover, the Synaptic Filter explains experimentally observed negative correlations between homo- and heterosynaptic plasticity.