Cargando…
Learning as filtering: Implications for spike-based plasticity
Most normative models in computational neuroscience describe the task of learning as the optimisation of a cost function with respect to a set of parameters. However, learning as optimisation fails to account for a time-varying environment during the learning process and the resulting point estimate...
Autores principales: | Jegminat, Jannes, Surace, Simone Carlo, Pfister, Jean-Pascal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865661/ https://www.ncbi.nlm.nih.gov/pubmed/35196324 http://dx.doi.org/10.1371/journal.pcbi.1009721 |
Ejemplares similares
-
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
por: Kutschireiter, Anna, et al.
Publicado: (2017) -
Publisher Correction: Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
por: Kutschireiter, Anna, et al.
Publicado: (2017) -
Bayesian regression explains how human participants handle parameter uncertainty
por: Jegminat, Jannes, et al.
Publicado: (2020) -
Correction: Bayesian regression explains how human participants handle parameter uncertainty
por: Jegminat, Jannes, et al.
Publicado: (2022) -
Approximate nonlinear filtering with a recurrent neural network
por: Kutschireiter, Anna, et al.
Publicado: (2015)