Cargando…
Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach
BACKGROUND: Japanese encephalitis (JE) virus (JEV) remains a leading cause of neurological infection across Asia. The high lethality of disease and absence of effective therapies mean that standardised animal models will be crucial in developing therapeutics. However, published mouse models are hete...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865681/ https://www.ncbi.nlm.nih.gov/pubmed/35143497 http://dx.doi.org/10.1371/journal.pntd.0010116 |
_version_ | 1784655679313674240 |
---|---|
author | Bharucha, Tehmina Cleary, Ben Farmiloe, Alice Sutton, Elizabeth Hayati, Hanifah Kirkwood, Peggy Al Hamed, Layal van Ginneken, Nadja Subramaniam, Krishanthi S. Zitzmann, Nicole Davies, Gerry Turtle, Lance |
author_facet | Bharucha, Tehmina Cleary, Ben Farmiloe, Alice Sutton, Elizabeth Hayati, Hanifah Kirkwood, Peggy Al Hamed, Layal van Ginneken, Nadja Subramaniam, Krishanthi S. Zitzmann, Nicole Davies, Gerry Turtle, Lance |
author_sort | Bharucha, Tehmina |
collection | PubMed |
description | BACKGROUND: Japanese encephalitis (JE) virus (JEV) remains a leading cause of neurological infection across Asia. The high lethality of disease and absence of effective therapies mean that standardised animal models will be crucial in developing therapeutics. However, published mouse models are heterogeneous. We performed a systematic review, meta-analysis and meta-regression of published JEV mouse experiments to investigate the variation in model parameters, assess homogeneity and test the relationship of key variables against mortality. METHODOLOGY/ PRINCIPAL FINDINGS: A PubMed search was performed up to August 2020. 1991 publications were identified, of which 127 met inclusion criteria, with data for 5026 individual mice across 487 experimental groups. Quality assessment was performed using a modified CAMARADES criteria and demonstrated incomplete reporting with a median quality score of 10/17. The pooled estimate of mortality in mice after JEV challenge was 64.7% (95% confidence interval 60.9 to 68.3) with substantial heterogeneity between experimental groups (I^2 70.1%, df 486). Using meta-regression to identify key moderators, a refined dataset was used to model outcome dependent on five variables: mouse age, mouse strain, virus strain, virus dose (in log(10)PFU) and route of inoculation. The final model reduced the heterogeneity substantially (I^2 38.9, df 265), explaining 54% of the variability. CONCLUSION/ SIGNIFICANCE: This is the first systematic review of mouse models of JEV infection. Better adherence to CAMARADES guidelines may reduce bias and variability of reporting. In particular, sample size calculations were notably absent. We report that mouse age, mouse strain, virus strain, virus dose and route of inoculation account for much, though not all, of the variation in mortality. This dataset is available for researchers to access and use as a guideline for JEV mouse experiments. |
format | Online Article Text |
id | pubmed-8865681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-88656812022-02-24 Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach Bharucha, Tehmina Cleary, Ben Farmiloe, Alice Sutton, Elizabeth Hayati, Hanifah Kirkwood, Peggy Al Hamed, Layal van Ginneken, Nadja Subramaniam, Krishanthi S. Zitzmann, Nicole Davies, Gerry Turtle, Lance PLoS Negl Trop Dis Research Article BACKGROUND: Japanese encephalitis (JE) virus (JEV) remains a leading cause of neurological infection across Asia. The high lethality of disease and absence of effective therapies mean that standardised animal models will be crucial in developing therapeutics. However, published mouse models are heterogeneous. We performed a systematic review, meta-analysis and meta-regression of published JEV mouse experiments to investigate the variation in model parameters, assess homogeneity and test the relationship of key variables against mortality. METHODOLOGY/ PRINCIPAL FINDINGS: A PubMed search was performed up to August 2020. 1991 publications were identified, of which 127 met inclusion criteria, with data for 5026 individual mice across 487 experimental groups. Quality assessment was performed using a modified CAMARADES criteria and demonstrated incomplete reporting with a median quality score of 10/17. The pooled estimate of mortality in mice after JEV challenge was 64.7% (95% confidence interval 60.9 to 68.3) with substantial heterogeneity between experimental groups (I^2 70.1%, df 486). Using meta-regression to identify key moderators, a refined dataset was used to model outcome dependent on five variables: mouse age, mouse strain, virus strain, virus dose (in log(10)PFU) and route of inoculation. The final model reduced the heterogeneity substantially (I^2 38.9, df 265), explaining 54% of the variability. CONCLUSION/ SIGNIFICANCE: This is the first systematic review of mouse models of JEV infection. Better adherence to CAMARADES guidelines may reduce bias and variability of reporting. In particular, sample size calculations were notably absent. We report that mouse age, mouse strain, virus strain, virus dose and route of inoculation account for much, though not all, of the variation in mortality. This dataset is available for researchers to access and use as a guideline for JEV mouse experiments. Public Library of Science 2022-02-10 /pmc/articles/PMC8865681/ /pubmed/35143497 http://dx.doi.org/10.1371/journal.pntd.0010116 Text en © 2022 Bharucha et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Bharucha, Tehmina Cleary, Ben Farmiloe, Alice Sutton, Elizabeth Hayati, Hanifah Kirkwood, Peggy Al Hamed, Layal van Ginneken, Nadja Subramaniam, Krishanthi S. Zitzmann, Nicole Davies, Gerry Turtle, Lance Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach |
title | Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach |
title_full | Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach |
title_fullStr | Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach |
title_full_unstemmed | Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach |
title_short | Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach |
title_sort | mouse models of japanese encephalitis virus infection: a systematic review and meta-analysis using a meta-regression approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865681/ https://www.ncbi.nlm.nih.gov/pubmed/35143497 http://dx.doi.org/10.1371/journal.pntd.0010116 |
work_keys_str_mv | AT bharuchatehmina mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT clearyben mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT farmiloealice mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT suttonelizabeth mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT hayatihanifah mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT kirkwoodpeggy mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT alhamedlayal mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT vanginnekennadja mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT subramaniamkrishanthis mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT zitzmannnicole mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT daviesgerry mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach AT turtlelance mousemodelsofjapaneseencephalitisvirusinfectionasystematicreviewandmetaanalysisusingametaregressionapproach |