Cargando…

Automated semantic relevance as an indicator of cognitive decline: Out‐of‐sample validation on a large‐scale longitudinal dataset

We developed and evaluated an automatically extracted measure of cognition (semantic relevance) using automated and manual transcripts of audio recordings from healthy and cognitively impaired participants describing the Cookie Theft picture from the Boston Diagnostic Aphasia Examination. We describ...

Descripción completa

Detalles Bibliográficos
Autores principales: Stegmann, Gabriela, Hahn, Shira, Bhandari, Samarth, Kawabata, Kan, Shefner, Jeremy, Duncan, Cayla Jessica, Liss, Julie, Berisha, Visar, Mueller, Kimberly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865737/
https://www.ncbi.nlm.nih.gov/pubmed/35229018
http://dx.doi.org/10.1002/dad2.12294
Descripción
Sumario:We developed and evaluated an automatically extracted measure of cognition (semantic relevance) using automated and manual transcripts of audio recordings from healthy and cognitively impaired participants describing the Cookie Theft picture from the Boston Diagnostic Aphasia Examination. We describe the rationale and metric validation. We developed the measure on one dataset and evaluated it on a large database (>2000 samples) by comparing accuracy against a manually calculated metric and evaluating its clinical relevance. The fully automated measure was accurate (r = .84), had moderate to good reliability (intra‐class correlation = .73), correlated with Mini‐Mental State Examination and improved the fit in the context of other automatic language features (r = .65), and longitudinally declined with age and level of cognitive impairment. This study demonstrates the use of a rigorous analytical and clinical framework for validating automatic measures of speech, and applied it to a measure that is accurate and clinically relevant.