Cargando…

Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria

Malaria is one of the prevalent tropical diseases caused by the parasitic protozoan of the genus Plasmodium spp. With an estimated 228 million cases, it is a major public health concern with high incidence of morbidity and mortality worldwide. The emergence of drug-resistant parasites, inadequate ve...

Descripción completa

Detalles Bibliográficos
Autores principales: Gujjari, Lohitha, Kalani, Hamed, Pindiprolu, Sai Kiran, Arakareddy, Bhanu Prakash, Yadagiri, Ganesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866151/
https://www.ncbi.nlm.nih.gov/pubmed/35243049
http://dx.doi.org/10.1016/j.parepi.2022.e00244
Descripción
Sumario:Malaria is one of the prevalent tropical diseases caused by the parasitic protozoan of the genus Plasmodium spp. With an estimated 228 million cases, it is a major public health concern with high incidence of morbidity and mortality worldwide. The emergence of drug-resistant parasites, inadequate vector control measures, and the non-availability of effective vaccine(s) against malaria pose a serious challenge to malaria eradication especially in underdeveloped and developing countries. Malaria treatment and control comprehensively relies on chemical compounds, which encompass various complications, including severe toxic effects, emergence of drug resistance, and high cost of therapy. To overcome the clinical failures of anti-malarial chemotherapy, a new drug development is of an immediate need. However, the drug discovery and development process is expensive and time consuming. In such a scenario, nanotechnological strategies may offer promising alternative approach for the treatment and control of malaria, with improved efficacy and safety. Nanotechnology based formulations of existing anti-malarial chemotherapeutic agents prove to exceed the limitations of existing therapies in relation to optimum therapeutic benefits, safety, and cost effectiveness, which indeed advances the patient's compliance in treatment. In this review, the shortcomings of malaria therapeutics and necessity of nanotechnological strategies for treating malaria were discussed.