Cargando…
Learning stochastic object models from medical imaging measurements by use of advanced ambient generative adversarial networks
PURPOSE: To objectively assess new medical imaging technologies via computer-simulations, it is important to account for the variability in the ensemble of objects to be imaged. This source of variability can be described by stochastic object models (SOMs). It is generally desirable to establish SOM...
Autores principales: | Zhou, Weimin, Bhadra, Sayantan, Brooks, Frank J., Li, Hua, Anastasio, Mark A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866417/ https://www.ncbi.nlm.nih.gov/pubmed/35229009 http://dx.doi.org/10.1117/1.JMI.9.1.015503 |
Ejemplares similares
-
Impact of deep learning-based image super-resolution on binary signal detection
por: Zhang, Xiaohui, et al.
Publicado: (2021) -
Assessing computed tomography image quality for combined detection and estimation tasks
por: Tseng, Hsin-Wu, et al.
Publicado: (2017) -
Multireader sample size program for diagnostic studies: demonstration and methodology
por: Hillis, Stephen L., et al.
Publicado: (2018) -
Eye tracking in catheter-based cardiovascular interventions: early results
por: Lanzer, Peter, et al.
Publicado: (2017) -
Deep neural network to locate and segment brain tumors outperformed the expert technicians who created the training data
por: Mitchell, Joseph Ross, et al.
Publicado: (2020)