Cargando…
Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations
Deep learning has an increasing impact to assist research, allowing, for example, the discovery of novel materials. Until now, however, these artificial intelligence techniques have fallen short of discovering the full differential equation of an experimental physical system. Here we show that a dyn...
Autores principales: | Chen, Xing, Araujo, Flavio Abreu, Riou, Mathieu, Torrejon, Jacob, Ravelosona, Dafiné, Kang, Wang, Zhao, Weisheng, Grollier, Julie, Querlioz, Damien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866480/ https://www.ncbi.nlm.nih.gov/pubmed/35197449 http://dx.doi.org/10.1038/s41467-022-28571-7 |
Ejemplares similares
-
Role of non-linear data processing on speech recognition task in the framework of reservoir computing
por: Abreu Araujo, Flavio, et al.
Publicado: (2020) -
Transcriptomic forecasting with neural ordinary differential equations
por: Erbe, Rossin, et al.
Publicado: (2023) -
Binding events through the mutual synchronization of spintronic nano-neurons
por: Romera, Miguel, et al.
Publicado: (2022) -
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
por: Vodenicarevic, Damir, et al.
Publicado: (2017) -
Forecasting virus outbreaks with social media data via neural ordinary differential equations
por: Núñez, Matías, et al.
Publicado: (2023)