Cargando…
Uncovering interpretable potential confounders in electronic medical records
Randomized clinical trials (RCT) are the gold standard for informing treatment decisions. Observational studies are often plagued by selection bias, and expert-selected covariates may insufficiently adjust for confounding. We explore how unstructured clinical text can be used to reduce selection bia...
Autores principales: | Zeng, Jiaming, Gensheimer, Michael F., Rubin, Daniel L., Athey, Susan, Shachter, Ross D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866497/ https://www.ncbi.nlm.nih.gov/pubmed/35197467 http://dx.doi.org/10.1038/s41467-022-28546-8 |
Ejemplares similares
-
Potential application of item-response theory to interpretation of medical codes in electronic patient records
por: Dregan, Alex, et al.
Publicado: (2011) -
Choice of Laboratory Rodent Diet May Confound Data Interpretation and Reproducibility
por: Pellizzon, Michael A, et al.
Publicado: (2020) -
A flexible, interpretable framework for assessing sensitivity to unmeasured confounding
por: Dorie, Vincent, et al.
Publicado: (2016) -
A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
por: Ganesan, Shiva, et al.
Publicado: (2020) -
Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records
por: Low, Yen Sia, et al.
Publicado: (2016)