Cargando…
Machine Learning analysis of high-grade serous ovarian cancer proteomic dataset reveals novel candidate biomarkers
Ovarian cancer is one of the most common gynecological malignancies, ranking third after cervical and uterine cancer. High-grade serous ovarian cancer (HGSOC) is one of the most aggressive subtype, and the late onset of its symptoms leads in most cases to an unfavourable prognosis. Current predictiv...
Autores principales: | Farinella, Federica, Merone, Mario, Bacco, Luca, Capirchio, Adriano, Ciccozzi, Massimo, Caligiore, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866540/ https://www.ncbi.nlm.nih.gov/pubmed/35197484 http://dx.doi.org/10.1038/s41598-022-06788-2 |
Ejemplares similares
-
A multi-expert ensemble system for predicting Alzheimer transition using clinical features
por: Merone, Mario, et al.
Publicado: (2022) -
Increasing Serotonin to Reduce Parkinsonian Tremor
por: Caligiore, Daniele, et al.
Publicado: (2021) -
Proteome profiling of low grade serous ovarian cancer
por: zadeh fakhar, Haniyeh Bashi, et al.
Publicado: (2019) -
Machine learning for exploring neurophysiological functionality in multiple sclerosis based on trigeminal and hand blink reflexes
por: Biggio, Monica, et al.
Publicado: (2022) -
Proteomic Discovery of Biomarkers to Predict Prognosis of High-Grade Serous Ovarian Carcinoma
por: Kim, Se Ik, et al.
Publicado: (2020)