Cargando…

The use of multivariate PCA dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens

Palynology-based multivariate datasets including geological, ecological, and geochemical data identified the relative importance of the underlying drivers of critical stressors to coastal wetlands by identifying and distinguishing between fluvial flooding, saline water intrusion, delta switching, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryu, Junghyung, Liu, Kam-biu, McCloskey, Terrence A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867045/
https://www.ncbi.nlm.nih.gov/pubmed/35242928
http://dx.doi.org/10.1016/j.dib.2022.107946
_version_ 1784655969351892992
author Ryu, Junghyung
Liu, Kam-biu
McCloskey, Terrence A.
author_facet Ryu, Junghyung
Liu, Kam-biu
McCloskey, Terrence A.
author_sort Ryu, Junghyung
collection PubMed
description Palynology-based multivariate datasets including geological, ecological, and geochemical data identified the relative importance of the underlying drivers of critical stressors to coastal wetlands by identifying and distinguishing between fluvial flooding, saline water intrusion, delta switching, and the landward migration of coastal plants. A sediment core was retrieved using a vibracorer from an intermediate marsh in Lake Salvador, Louisiana, USA. X-ray Fluorescence (XRF) quantified fluvial and marine elemental concentrations (Cl, Sr, Ca, Mn, K, Ti, Fe, Zn, Zr, Br). Palynology-based agglomerate hierarchical analysis of thirty-two pollen taxa was employed to define ecological clusters. The implementation of multivariate principal component analysis (PCA) to geochemical and ecological variables inferred the source of sedimentary material by correlating four taxonomic groups (floodplain trees, upland trees, tidal freshwater herbs, and inland herbs) to specific geochemical signatures and facilitated the testing of potential correlations between geo- and hydrological-conditions and the six ecosystems (interdistributary, delta-plain, deltaic lake, bottomland and swamp forests, freshwater marsh, and intermediate marsh) depicted in each PCA biplot. The PCA scores quantified the relative importance of multiple variables. The squared cosine function, which demonstrates the relative importance of a variable for a given observation, was used to estimate the representation of each variable on the principal component biplots. Multivariate statistical datasets can be valuable to any scientist working across the spectrum of environmental and planetary science fields as a means of identifying the relative importance of diverse background parameters in controlling ecological and environmental conditions. This methodology is applicable across both natural and social sciences as a means of distinguishing natural and anthropogenic impacts.
format Online
Article
Text
id pubmed-8867045
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-88670452022-03-02 The use of multivariate PCA dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens Ryu, Junghyung Liu, Kam-biu McCloskey, Terrence A. Data Brief Data Article Palynology-based multivariate datasets including geological, ecological, and geochemical data identified the relative importance of the underlying drivers of critical stressors to coastal wetlands by identifying and distinguishing between fluvial flooding, saline water intrusion, delta switching, and the landward migration of coastal plants. A sediment core was retrieved using a vibracorer from an intermediate marsh in Lake Salvador, Louisiana, USA. X-ray Fluorescence (XRF) quantified fluvial and marine elemental concentrations (Cl, Sr, Ca, Mn, K, Ti, Fe, Zn, Zr, Br). Palynology-based agglomerate hierarchical analysis of thirty-two pollen taxa was employed to define ecological clusters. The implementation of multivariate principal component analysis (PCA) to geochemical and ecological variables inferred the source of sedimentary material by correlating four taxonomic groups (floodplain trees, upland trees, tidal freshwater herbs, and inland herbs) to specific geochemical signatures and facilitated the testing of potential correlations between geo- and hydrological-conditions and the six ecosystems (interdistributary, delta-plain, deltaic lake, bottomland and swamp forests, freshwater marsh, and intermediate marsh) depicted in each PCA biplot. The PCA scores quantified the relative importance of multiple variables. The squared cosine function, which demonstrates the relative importance of a variable for a given observation, was used to estimate the representation of each variable on the principal component biplots. Multivariate statistical datasets can be valuable to any scientist working across the spectrum of environmental and planetary science fields as a means of identifying the relative importance of diverse background parameters in controlling ecological and environmental conditions. This methodology is applicable across both natural and social sciences as a means of distinguishing natural and anthropogenic impacts. Elsevier 2022-02-11 /pmc/articles/PMC8867045/ /pubmed/35242928 http://dx.doi.org/10.1016/j.dib.2022.107946 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Ryu, Junghyung
Liu, Kam-biu
McCloskey, Terrence A.
The use of multivariate PCA dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens
title The use of multivariate PCA dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens
title_full The use of multivariate PCA dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens
title_fullStr The use of multivariate PCA dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens
title_full_unstemmed The use of multivariate PCA dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens
title_short The use of multivariate PCA dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens
title_sort use of multivariate pca dataset in identifying the underlying drivers of critical stressors, looking at global problems through a local lens
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867045/
https://www.ncbi.nlm.nih.gov/pubmed/35242928
http://dx.doi.org/10.1016/j.dib.2022.107946
work_keys_str_mv AT ryujunghyung theuseofmultivariatepcadatasetinidentifyingtheunderlyingdriversofcriticalstressorslookingatglobalproblemsthroughalocallens
AT liukambiu theuseofmultivariatepcadatasetinidentifyingtheunderlyingdriversofcriticalstressorslookingatglobalproblemsthroughalocallens
AT mccloskeyterrencea theuseofmultivariatepcadatasetinidentifyingtheunderlyingdriversofcriticalstressorslookingatglobalproblemsthroughalocallens
AT ryujunghyung useofmultivariatepcadatasetinidentifyingtheunderlyingdriversofcriticalstressorslookingatglobalproblemsthroughalocallens
AT liukambiu useofmultivariatepcadatasetinidentifyingtheunderlyingdriversofcriticalstressorslookingatglobalproblemsthroughalocallens
AT mccloskeyterrencea useofmultivariatepcadatasetinidentifyingtheunderlyingdriversofcriticalstressorslookingatglobalproblemsthroughalocallens