Cargando…
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
In-stent restenosis is a recurrence of coronary artery narrowing due to vascular injury caused by balloon dilation and stent placement. It may lead to the relapse of angina symptoms or to an acute coronary syndrome. An uncertainty quantification of a model for in-stent restenosis with four uncertain...
Autores principales: | Ye, Dongwei, Zun, Pavel, Krzhizhanovskaya, Valeria, Hoekstra, Alfons G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867271/ https://www.ncbi.nlm.nih.gov/pubmed/35193385 http://dx.doi.org/10.1098/rsif.2021.0864 |
Ejemplares similares
-
Uncertainty Quantification of a Multiscale Model for In-Stent Restenosis
por: Nikishova, Anna, et al.
Publicado: (2018) -
Inference and uncertainty quantification of stochastic gene expression via synthetic models
por: Öcal, Kaan, et al.
Publicado: (2022) -
Assessing model mismatch and model selection in a Bayesian uncertainty quantification analysis of a fluid-dynamics model of pulmonary blood circulation
por: Paun, L. Mihaela, et al.
Publicado: (2020) -
Parameter estimation and uncertainty quantification using information geometry
por: Sharp, Jesse A., et al.
Publicado: (2022) -
Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry
por: House, Thomas, et al.
Publicado: (2016)